
Single-particle processing in relion-3.1

Sjors H.W. Scheres
(ccpem@jiscmail.ac.uk)

October 9, 2019

Abstract

This tutorial provides an introduction to the use of relion-3.1 for
cryo-EM structure determination. This tutorial covers the entire single-
particle analysis workflow in relion-3.1: beam-induced motion-correction,
CTF estimation; automated particle picking; particle extraction; 2D class
averaging; SGD-based initial model generation; 3D classification; high-
resolution 3D refinement; CTF refinement and higher-order aberration
correction; the processing of movies from direct-electron detectors; and
final map sharpening and local-resolution estimation. Carefully going
through this tutorial should take less than a day (if you have a suitable
GPU or if you follow our precalculated results). After that, you should
be able to run relion on your own data.

This tutorial uses a test data set on beta-galactosidase that was kindly
given to us by Takayuki Kato from the Namba group at Osaka university,
Japan. It was collected on a 200kV JEOL cryo-ARM microscope. The
data and our precalculated results may be downloaded and unpacked using
the commands below. The full data set is also available at EMPIAR-
10204.

wget ftp://ftp.mrc-lmb.cam.ac.uk/pub/scheres/relion30_tutorial_data.tar

wget ftp://ftp.mrc-lmb.cam.ac.uk/pub/scheres/relion31_tutorial_precalculated_results.tar.gz

tar -xf relion30_tutorial_data.tar

tar -zxf relion31_tutorial_precalculated_results.tar.gz

If you have any questions about relion, first read this entire docu-
ment, check the FAQ on the relion Wiki and the archives of the CCPEM
mailing list. If that doesn’t help, subscribe to the CCPEM email list and
use the email address above for asking your question. Please, please,

please, do not send us direct emails, as we can no longer respond to all of

those.

1

mailto:ccpem@jiscmail.ac.uk
http://www2.mrc-lmb.cam.ac.uk/relion/index.php/FAQs
https://www.jiscmail.ac.uk/ccpem

Contents

1 What’s new in release 3.1? 4
1.1 Aberration corrections and optics groups 4
1.2 The External job-type . 5
1.3 Schedules for on-the-fly processing 5
1.4 General tweaks . 5
1.5 Tweaks to helical processing . 6

2 Preprocessing 7
2.1 Getting organised . 7
2.2 Beam-induced motion correction 8
2.3 CTF estimation . 11
2.4 Manual particle picking . 12
2.5 LoG-based auto-picking . 14
2.6 Particle extraction . 16
2.7 Making templates for auto-picking 18
2.8 Selecting templates for auto-picking 22
2.9 Auto-picking . 22

2.9.1 The shrink parameter . 27

3 Reference-free 2D class averaging 28
3.1 Running the job . 28
3.2 Analysing the results in more detail 29
3.3 Making groups . 30

4 De novo 3D model generation 31
4.1 Running the job . 31
4.2 Analysing the results . 32

5 Unsupervised 3D classification 32
5.1 Running the job . 33
5.2 Analysing the results in more detail 35

6 High-resolution 3D refinement 36
6.1 Running the auto-refine job . 38
6.2 Analysing the results . 39

7 Mask creation & Postprocessing 39
7.1 Making a mask . 39
7.2 Postprocessing . 40

8 CTF and aberration refinement 42
8.1 Higher-order aberrations . 42
8.2 Anisotropic magnification . 43
8.3 Per-particle defocus values . 44

2

9 Bayesian polishing 45
9.1 Running in training mode . 45
9.2 Running in polishing mode . 46
9.3 Analysing the results . 47
9.4 When and how to run CTF refinement and Bayesian polishing . 48

10 Local-resolution estimation 49
10.1 Running the job . 49
10.2 Analysing the results . 49

11 Checking the handedness 50

12 Wrapping up 50
12.1 Making a flowchart . 50
12.2 Cleaning up your directories . 51
12.3 Asking questions and citing us 51
12.4 Further reading . 51

13 Appendix A: notes on installation 53
13.1 Install MPI . 53
13.2 Install CUDA . 53
13.3 Install RELION . 53
13.4 Install motion-correction software 53
13.5 Install CTF-estimation software 54
13.6 Install RESMAP . 54

14 Appendix B: using RELION 55
14.1 The GUI . 55

14.1.1 A pipeline approach . 55
14.1.2 The upper half: jobtype-browser and parameter-panel . . 55
14.1.3 The lower half: job-lists and stdout/stderr windows . . . 55
14.1.4 The Display button . 56
14.1.5 The Job actions button 56
14.1.6 Clean-up to save disk space 56

14.2 Optimise computations for your setup 57
14.2.1 GPU-acceleration . 57
14.2.2 Disk access . 57

14.3 Interaction with other programs 59
14.4 The External job-type . 59

14.4.1 User interaction through the GUI 59
14.4.2 Functionality of the executable script 60
14.4.3 Example: a particle-picker 61

14.5 On-the-fly processing: Schedules 62
14.5.1 Variables . 63
14.5.2 Jobs . 63
14.5.3 Operators . 63

3

14.5.4 Edges . 66
14.5.5 Creating a new Schedule 66
14.5.6 Executing a Schedule . 68

14.6 Helical reconstruction . 69
14.6.1 Initial model generation for amyloids 69

14.7 Sub-tomogram averaging . 70

1 What’s new in release 3.1?

1.1 Aberration corrections and optics groups

One of the major new features in relion-3.1 is a correction for higher-order
aberrations in the data, i.e. besides the beamtilt correction already present in
relion-3.0, the current version can also estimate and correct for trefoil and
tetrafoil, as well as deviations from the nominal spherical aberration (Cs). The
corresponding paper can be found on bioRxiv [21]. The signal to estimate
these aberrations is calculated by averaging over particles from multiple mi-
crographs. To allow for multiple subsets of a data set having different Zernike
coefficients, relion-3.1 implements the new concept of optics groups. Optics
groups are defined in a separate table called data_optics at the top of a STAR
file, which will also contain a table called data_movies, data_micrographs or
data_particles, depending on what type of images it refers to. The second ta-
ble is similar to the content of STAR files in previous releases, but contains a new
column called rlnOpticsGroup, which is also present in the data_optics table.
Common CTF-parameters, like rlnVoltage and _rlnSphericalAberration,
but also the new rlnOddZernike and rlnEvenZernike, can be stored once for
each optics group in the data_optics table, without the need to store them for
each particle/micrograph in the second table.

The same program that handles higher-order aberrations can also be used to re-
fine differences in (anisotropic) magnification between the reference and (groups
of) the particles. Besides correcting for anisotropic magnification in the data,
this is also useful when combining data from different scopes. As of release 3.1,
the program that does 2D/3D classification and 3D refinement (relion_refine)
can combine particles with different box sizes and pixel sizes in a single refine-
ment, and the magnification refinement can be used to correct small errors in
the (calibrated) pixel sizes. The box and pixel size of the input reference (or the
first optics group in 2D classification) will be used for the reconstructions/class
averages. You may want to check they are on the desired scale before running
classifications or refinements!

Upon reading STAR files that were generated in older releases of relion, re-
lion-3.1 will attempt to convert these automatically into the relion-3.1-style
STAR files. Therefore, moving a project from an older release to relion-3.1
should be easy. However, please note that relion-3.1-style STAR files cannot

4

be read by older releases. Therefore, it will be more difficult to go back from a
relion-3.1 project to an older release.

1.2 The External job-type

relion-3.1 allows execution of third-party software within the relion pipeline
through the new External job-type. See section 14.4 for details on how to use
this.

1.3 Schedules for on-the-fly processing

The python script relion_it.py in relion-3.0 has been replaced by a new
framework of Schedules, which implement decision-based scheduling and execu-
tion of relion jobs. This comes with its own GUI interface. See section 14.5
for details on how to use this.

1.4 General tweaks

Several tweaks have been made to enhance user experience:

• The pipeliner no longer looks for output files to see whether a job has fin-
ished. Instead, upon successful exit, all programs that are launched from
within the relion pipeline will write out a file called RELION_EXIT_SUCCESS
in the job directory. This avoids problems with subsequent execution of
scheduled jobs with slow disc I/O.

• Likewise, when encountering an error, all programs will write out a file
called RELION_EXIT_FAILURE. The GUI will recognise these jobs and use

a red font in the Finished jobs list. Note that incorrectly labeled jobs can

be changed using the ’Mask as finished’ or ’Mark as failed’ options from
the Job actions pull-down menu.

• There is an ’Abort running’ option on the Job actions pull-down menu,
which will trigger the currently selected job to abort. This works because
all jobs that are executed from within the relion pipeline will be on the
lookout for a file called RELION_JOB_ABORT_NOW in their output directory.
When this file is detected, the job will exit prematurely and write out a
RELION_EXIT_ABORTED file in the job directory. Thereby, users no longer
need to kill undesired processes through the queuing or operating system.
The GUI will display aborted jobs with a strike-through red font in the

Finished jobs list.

• When a job execution has given an error, in previous releases the user
would need to fix the error through the input parameters, and then launch

5

a new job. They would then typically delete the old job. relion-3.1 allows
to directly overwrite the old job. This is accessible on Linux systems
through ’ALT+o’ or through the ’Overwrite continue’ option from the
’File menu’. Note that the run.out and run.err files will be deleted
upon a job overwrite.

1.5 Tweaks to helical processing

Several new functionalities were implemented for helical processing:

• The relion_helix_inimodel2d program can be used to generate initial
3D reference maps for helices, in particular for amyloids, from 2D classes
that span an entire cross-over (see section 14.6.1).

• The translational offsets along the direction of the helical axis can now be
restricted to a single rise in 2D-classification.

• The 3D refinement and 3D classification now can use a prior on the
first Euler angle, (rlnAngleRotPrior), which was implemented by Kent
Thurber from the Tycko lab at the NIH.

6

2 Preprocessing

2.1 Getting organised

We recommend to create a single directory per project, i.e. per structure you
want to determine. We’ll call this the project directory. It is important to
always launch the RELION graphical user-interface (GUI) from the
project directory. Inside the project directory you should make a separate
directory to store all your raw micrographs or micrograph movies in MRC or
TIFF format. We like to call this directory Movies/ if all movies are in one
directory, or for example Movies/15jan16/ and Movies/23jan16/ if they are
in different directories (e.g. because they were collected on different dates). If
for some reason you do not want to place your movies inside the relion project
directory, then inside the project directory you can also make a symbolic link
to the directory where your movies are stored.

Single-image micrographs should have a .mrc extension, movies can have a .mrc,
.mrcs, .tif or .tiff extension. When you unpacked the tutorial test data,
the (Movies/) directory was created. It should contain 24 movies in compressed
TIFF format, a gain-reference file (gain.mrc) and a NOTES file with information
about the experiment.

We will start by launching the relion GUI. As said before, this GUI always
needs to be launched from the project directory. To prevent errors with this,
the GUI will ask for confirmation the first time you launch it in a new directory.
Therefore, the first time you launch the GUI in a new directory, you should not
use the “&” character to launch it in the background. Make sure you are inside
the project directory, and launch the GUI by typing:

relion

and answer “y” to set up a new relion project here.

The first thing to do is to import the set of recorded micrograph movies into
the pipeline. Select “Import” from the job-type browser on the left, and fill in
the following parameters on the Movies/mics tab:

• Import raw movies/micrographs? Yes

• Raw input files: Movies/*.tiff

• Are these multi-frame movies? Yes

(Set this to “No” if these are single-frame micrographs)

• Optics group name: opticsGroup1

(This field can be used to divide the data set into multiple optics groups:
separately import each optics group with its own name, and then use the
“Join star files” jobtype to combine the groups.

7

• MTF of the detector: mtf k2 200kV.star

• Pixel size (Angstrom): 0.885

• Voltage (kV): 200

• Spherical aberration (mm): 1.4

• Amplitude contrast: 0.1

• Beamtilt in X (mrad): 0

• Beamtilt in Y (mrad): 0

On the Others tab, make sure the following is set:

• Import other node types? No

You may provide a meaningful alias (for example: movies) for this job in the
white field named Current job: Give_alias_here. Clicking the Run! button
will launch the job. A directory called Import/job001/ will be created, together
with a symbolic link to this directory that is called Import/movies. Inside the
newly created directory a star file with all the movies is created. Have a look
at it using:

less Import/job001/movies.star

If you had extracted your particles in a different software package, then instead
of going through the Preprocessing steps below, you would use the same Import

job-type to import particles star file, 3D references, 3D masks, etc. Note
that this is NOT the recommended way to run relion, and that the user is
responsible for generating correct star files.

2.2 Beam-induced motion correction

The Motion correction job-type implements relion’s own (CPU-based) im-
plementation of the UCSF motioncor2 program for convenient whole-frame
movie alignment, as well as a wrapper to the (GPU-based) motioncor2 pro-
gram itself [20]. Besides executing the calculations on the CPU/GPU, there are
three other differences between the two implementations:

• Bayesian polishing (for per-particle motion-correction; see section 9) can
only read local motion tracks from our own implementation;

• The motioncor2 program performs outlier-pixel detection on-the-fly, and
this information is not conveyed to Bayesian polishing , which may result
in unexpectedly bad particles after polishing;

• Our own implementation can write out the sum of power spectra over
several movie frames, which can be passed directly into CTFFIND4-1

for faster CTF-estimation.

8

For these three reasons, we now favour running our own implementation.

On the I/O tab set:

• Input movies STAR file: Import/movies/movies.star

(Note that the Browse button will only list movie star files.)

• First frame for corrected sum: 1

• Last frame for corrected sum: 0

(This will result in using all movie frames.)

• Dose per frame (e/A2) 1.277

• Pre-exposure (e/A2) 0

• Do dose-weighting? Yes

• Save non-dose-weighted as well? No

(In some cases non-dose-weighted micrographs give better CTF estimates.
To save disk space, we’re not using this option here as the data are very
good anyway.)

• Save sum of power spectra? Yes

• Sum of power spectra every e/A2: 4

(This seems to be a good value according to measurements by Greg Mc-
Mullan and Richard Henderson.)

Fill in the Motion tab as follows:

• Bfactor: 150

(use larger values for super-resolution movies)

• Number of patches X,Y 5 5

• Group frames: 1

• Binning factor: 1

(we often use 2 for super-resolution movies)

• Gain-reference image: Movies/gain.mrc

(This can be used to provide a gain-reference file for on-the-fly gain-
reference correction. This is necessary in this case, as these movies are
not yet gain-corrected.)

• Gain rotation: No rotation (0)

• Gain flip: No flipping (0)

9

• Defect file:

(This can be used to mask away broken pixels on the detector. Formats
supported in our own implementation and in UCSF motioncor2 are ei-
ther a text file in UCSF motioncor2 format (each line contains four
numbers: x, y, width and height of a defect region); or a defect map (an
image in MRC or TIFF format, where 0=good and 1=bad pixels). The
coordinate system is the same as the input movie before application of
binning, rotation and/or flipping. Note that defect text files pro-
duced by serialem are NOT supported! However, one can convert a
serialem-style defect file into a defect map using imod.)

• Use RELION’s own implementation? Yes

(this reduces the requirement to install the UCSF implementation. If you
have the UCSF program installed anyway, you could also use that one. In
that case, you also need to fill in the options below.)

Fill in the Running tab as follows:

• Number of MPI procs: 1

(Assuming you’re running this tutorial on a local computer)

• Number of threads: 12

(As these movies are 24 frames, each thread will do two movie frames)

• Submit to queue? No

(Again, assuming you’re running this tutorial on a local computer)

Executing this program takes approximately 5 minutes when using 12 threads
on a reasonably modern machine. Note that our own implementation of the
motioncor2 algorithm does not use a GPU. It is however multi-threaded. As
each thread will work independently on a movie frame, it is optimal to use
a number of threads such that the number of movie frames divided by the
number threads is an integer number. As these movies have 24 frames, us-
ing 12 threads will result in 2 frames being processed by each thread. You
can look at the estimated beam-induced shifts, and their statistics over the
entire data set, by selecting the out: logfile.pdf from the Display: button
below the run buttons, or you can look at the summed micrographs by se-
lecting out: corrected_micrographs.star. Depending on the size of your
screen, you should probably downscale the micrographs (Scale: 0.3) and use
Sigma contrast: 3 and few columns (something like Number of columns: 3)
for convenient visualisation. Note that you cannot select any micrographs from
this display. If you want to exclude micrographs at this point (which we will not
do, because they are all fine), you could use the Subset selection job-type.

10

2.3 CTF estimation

Next, we will estimate the CTF parameters for each corrected micrograph. You
can use the CTF estimation job-type as a wrapper to Kai Zhang’s gctf to
execute on the GPU, or you can also use Alexis Rohou and Niko Grigorieff’s
ctffind4.1 to execute efficiently on the CPU.We now prefer ctffindCTFFIND-
4.1, as it is the only open-source option, and because it allows reading in the
movie-averaged power spectra calculation by relion’s own implementation of
the motioncor-2 algorithm. On the I/O tab, use the Browse button to select

the corrected_micrographs.star file of the Motion correction job. Then fill
in the other settings as follows:

On the I/O :

• Use micrograph without dose-weighting? No

(These may have better Thon rings than the dose-weighted ones, but we
decided in the previous step not to write these out)

• Estimate phase shifts? No

(This is only useful for phase-plate data)

• Amount of astigmatism (A): 100

(Assuming your scope was reasonably well aligned, this value will be suit-
able for many data sets.)

On the CTFFIND-4.1 tab, set:

• Use CTFFIND-4.1? Yes

• CTFFIND-4.1 executable: /wherever/it/is/ctffind.exe

• Use power spectra from MotionCorr job? Yes

(We can use these, as we told relion’s own implementation of the mo-

tioncor-2 algorithm to write these out in the previous section.)

• Use exhaustive search? No

(In difficult cases, the slower exhaustive searches may yield better results.
For these data, this is not necessary.)

• Estimate CTF on window size (pix) -1

(If a positive value is given, a squared window of this size at the center of
the micrograph will be used to estimate the CTF. This may be useful to
exclude parts of the micrograph that are unsuitable for CTF estimation,
e.g. the labels at the edge of photographic film.)

• FFT box size (pix): 512

• Minimum resolution (A): 30

11

• Maximum resolution (A): 5

• Minimum defocus cvalue (A): 5000

• Maximum defocus cvalue (A): 50000

• Defocus step size (A): 500

On the Gctf tab, make sure the option to use gctf instead is set to No. On the
Running tab, use six MPI processes to process the 24 micrographs in parallel.
This took less than 10 seconds on our machine. Once the job finishes there are
additional files for each micrograph inside the output CtfFind/job003/Movies
directory: the .ctf file contains an image in MRC format with the computed
power spectrum and the fitted CTF model; the .log file contains the output
from ctffind or gctf; (only in case of using ctffind, the .com file contains
the script that was used to launch ctffind).

You can visualise all the Thon-ring images using the Display button, selecting
out: micrographs_ctf.star. The zeros between the Thon rings in the ex-
perimental images should coincide with the ones in the model. Note that you
can sort the display in order of defocus, maximum resolution, figure-of-merit,
etc. The logfile.pdf file contains plots of useful parameters, such as defocus,
astigmatism, estimated resolution, etc for all micrographs, and histograms of
these values over the entire data set. Analysing these plots may be useful to
spot problems in your data acquisition.

If you see CTF models that are not a satisfactory fit to the experimental
Thon rings, you can delete the .log files for those micrographs, select the

CtfFind/job003 entry from the Finished jobs list, alter the parameters in

the parameter-panel, and then re-run the job by clicking the Continue! button.
Only those micrographs for which a .log file does not exist will be re-processed.
You can do this until all CTF models are satisfactory. If this is not possible,
or if you decide to discard micrographs because they have unsatisfactory Thon
rins, you can use the Subset selection job-type to do this.

2.4 Manual particle picking

The next job-type Manual picking may be used to manually select particle co-
ordinates in the (averaged) micrographs. We like to manually select at least
several micrographs in order to get familiar with our data. Often, the manu-
ally selected particles to calculate reference-free 2D class averages, which will
then be used as templates for automated particle picking of the entire data set.
However, as of release 3.0, relion also contains a reference-free auto-picking
procedure based on a Laplacian-of-Gaussian (LoG) filter. In most cases tested
thus far, this procedure provides reasonable starting coordinates, so that the
Manual picking step may be skipped. The pre-shipped Schedules for on-the-fly
processing make use of this functionality to perform fully automated on-the-fly

12

processing. In this tutorial, we will just launch a Manual picking job for illus-

trative purposes, and then proceed with LoG-based Auto-picking to generate
the first set of particles.

Picking particles manually is a personal experience! If you don’t like to pick
particles in relion, we also support coordinate file formats for Jude Short’s
ximdisp [17] (with any extension); for xmipp-2.4 [16] (with any extension);
and for Steven Ludtke’s e2boxer.py [18] (with a .box extension). If you
use any of these, make sure to save the coordinate files as a text file in the
same directory as from where you imported the micrographs (or movies), and
with the same micrograph rootname, but a different (suffix+) extension as the
micrograph, e.g. Movies/006.box or Movies/006_pick.star for micrograph
Movies/006.mrc. You should then use the Import job-type and set Node type:

to 2D/3D particle coordinates. Make sure that the Input Files: field con-
tains a linux wildcard, followed by the coordinate-file suffix, e.g. for the exam-
ples above you have to give Movies/*.box or Movies/*_pick.star, respec-
tively.

On the I/O tab of the Manual picking job-type, use the Browse button to select
the micrographs_ctf.star file that was created in CtfFind/job003, ignore the
Colors tab, and fill in the Display tab as follows:

• Particle diameter (A): 200

(This merely controls the diameter of the circle that is displayed on the
micrograph.)

• Scale for micrographs: 0.25

(But this depends on your screen size)

• Sigma contrast: 3

(Micrographs are often best display with “sigma-contrast”, i.e. black will
be 3 standard deviation below the mean and white will be 3 standard
deviations above the mean. The grey-scale is always linear from black to
white. See the DisplayImages entry on the relion wiki for more details)

• White value: 0

(Use this to manually set which value will be white. For this to work,
Sigma contrast should be set to 0)

• Black value: 0

(Use this to manually set which value will be black. For this to work,
Sigma contrast should be set to 0)

• Lowpass filter (A): 20

(Playing with this may help you to see particles better in very noisy mi-
crographs)

13

http://www2.mrc-lmb.cam.ac.uk/research/locally-developed-software/image-processing-software/
http://xmipp.cnb.uam.es
http://blake.bcm.edu/emanwiki/EMAN2/Programs/e2boxer
http://www2.mrc-lmb.cam.ac.uk/relion/index.php/DisplayImages

• Highpass filter (A): 0

(This is sometimes useful to remove dark-¿light gradients over the entire
micrograph)

• Pixel size: 0.885

(This is needed to calculate the particle diameter, and the low- and high-
pass filters)

• Scale for CTF image: 1

(This merely controls how large the Thon-ring images will be when you
click the CTF button for any micrograph)

Run the job by clicking the Run! button and click on a few particles if you want
to. However, as we will use the LoG-based autopicking in the next section, you
do not need to pick any if you don’t want to. If you were going to use
manually picked particles for an initial 2D classification job, then you would
need approximately 500-1,000 particles in order to calculate reasonable class
averages. Left-mouse click for picking, middle-mouse click for deleting a picked
particle, right-mouse click for a pop-up menu in which you will need to save
the coordinates!. Note that you can always come back to pick more from where
you left it (provided you saved the star files with the coordinates throught the

pop-up menu), by selecting ManualPick/job004 from the Finished jobs and

clicking the Continue! button.

2.5 LoG-based auto-picking

We will now use a template-free auto-picking procedure based on a Laplacian-
of-Gaussian (LoG) filter to select an initial set of particles. These particles
will then be used in a 2D classification job to generate templates for a second
Auto-picking job. Because we do not need many particles in the first round,
we will only perform LoG-based auto-picking on the first 3 micrographs. Note
that in general, one would probably perform LoG-based picking on all available
micrographs to get as good templates as possible. However, here we only use a
few micrographs to speed up the calculations in this tutorial.

First, in order to select a few micrographs, go to the Subset selection job, and
on the I/O tab leave everything empty, except:

• OR select from picked coords: ManualPick/job004/coords suffix manualpick.star

(which was generated when we saved a few manually picked coordinates.
We are not going to use the coordinates here, we are only using that job
to make a subset selecton of the micrographs.)

We used an alias 5mics for this job. When you press Run! , the same pop-
up window of the Manual picking job will appear again, i.e. the one with all

14

the pick and CTF buttons. Use the ’File’ menu to ’Invert selection’; click on
the check box in front of the first five micrographs to select those; and then
use the ’File’ menu again to ’Save selection’. This will result in a file called
ManualPick/job004/micrographs_selected.star, which we will use for the
Auto-picking job below.

Then, proceed to the Auto-picking job, and on the I/O tab set:

• Input micrographs for autopick: Select/job005/micrographs selected.star

• Pixel size in micrographs (A) -1

(The pixel size will be set automatically from the information in the input
STAR file.)

• 2D references:

(Leave this empty for template-free LoG-based auto-picking.)

• OR: provide a 3D reference? No

• OR: use Laplacian-of-Gaussian? Yes

On the Laplacian tab, set:

• Min. diameter for loG filter (A) 150

• Max. diameter for loG filter (A) 180

(This should correspond to the smallest and largest size of your particless
projections in Ångstroms.)

• Are the particles white? No

(They are black.)

• Maximum resolution to consider 20

(Just leave the default value here.)

• Adjust default threshold 0

(Positive values, i.e. high thresholds, will pick fewer particles, negative
values will pick fewer particles. Useful values are probably in the range
[-1,1], but in many cases the default value of zero will do a decent job. The
threshold is moved this many standard deviations away from the average.)

• Upper threshold 5

(Use this to discard picks with LoG values that are this many standard
deviations above the average, e.g. to avoid high contrast contamination
like ice and ethane droplets. Good values depend on the contrast of mi-
crographs and may need to be interactively explored; for low contrast
micrographs, values of 1.5 may be reasonable, but this value is too low
for the high-contrast micrographs in this tutorial.)

15

Ignore the References tab, and on the autopicking tab, the first four options
will be ignored. Set the rest as follows:

• Write FOM maps? No

(This will be used in the template-based picking below.)

• Read FOM maps? No

(This will be used in the template-based picking below.)

• Shrink factor: 0

(By setting shrink to 0, the autopicking program will downscale the mi-
crographs to the resolution of the lowpass filter on the references. This
will go much faster and require less memory, which is convenient for doing
this tutorial quickly. Values between 0 and 1 will be the resulting fraction
of the micrograph size. Note that this will lead to somewhat less accu-
rate picking than using shrink=1, i.e. no downscaling. A more detailed
description of this new parameter is given in the next subsection.)

• Use GPU acceleration? No

(LoG-based picking has not been GPU-accelerated as the calculations are
very quick anyway.)

Ignore the Helix tab, and run using a single MPI processor on the Running tab .
Perhaps an alias like LoG would be meaningful? Using a single processor, these
calculations take about 15 seconds on our computer.

You can check the results by clicking the coords_suffix_autopick option from
the Display: button. One could manually add/delete particles in the pop-up
window that appears at this stage. In addition, one could choose to pick more
or fewer particle by running a new job while adjusting the default threshold on
the Laplacian tab, and/or the parameters for the stddev and avg of the noise
on the autopicking tab. However, at this stage we are merely after a more-
or-less OK initial set of particles for the generation of templates for a second
auto-picking job, so in many cases this is probably not necessary.

2.6 Particle extraction

Once you have a coordinate file for every micrograph that you want to pick par-
ticles from, you can extract the corresponding particles and gather all required
metadata through the Particle extraction job-type. On the corresponding I/O

tab, set:

• micrograph STAR file: CtfFind/job003/micrographs ctf.star

(Use the Browse button to select this file. You could also chose the selected
micrographs file from the ManualPick directory. It doesn’t matter as
there are only coordinate files for the three selected micrographs anyway.

16

Warning that coordinates files are missing for the rest of the micrographs
will appear in red in the bottom window of the GUI.)

• Coordinate-file suffix: AutoPick/job006/coords suffix autopick.star

(Use the Browse button to select this file)

• OR re-extract refined particles? No

(This option allows you to use a _data.star file from a 2D cassification ,
3D classification or 3D auto-refine job for re-extraction of only those parti-
cles in the star file. This may for example be useful if you had previously
down-scaled your particles upon extraction, and after initial classifications
you now want to perform refinements with the original-scaled particles.
As of relion-3.0, this functionality has been extended with an option to
’re-center refined coordinates’ on a user-specified X,Y,Z-coordinate in the
3D reference used for a 3D classification or 3D auto-refine job. This will
adjust the X and Y origin coordinates of all particles, such that a recon-
struction of the newly extracted particles will be centered on that X,Y,Z
position. This is useful for focused refinements.)

• Manually set pixel size? No

(This is only necessary when the input micrograph star file does NOT
contain CTF information.)

On the extract tab you set the parameters for the actual particle extrac-
tion:

• Particle box size (pix): 256

(This should always be an even number!)

• Invert contrast? Yes

(This makes white instead of black particles.)

• Normalize particles? Yes

(We always normalize.)

• Diameter background circle (pix): 200

(Particles will be normalized to a mean value of zero and a standard-
deviation of one for all pixels in the background area.The background area
is defined as all pixels outside a circle with this given diameter in pixels
(before rescaling). When specifying a negative value, a default value of
75% of the Particle box size will be used.)

• Stddev for white dust removal: -1

• Stddev for black dust removal: -1

17

(We only remove very white or black outlier pixels if we actually see them
in the data. In such cases we would use stddev values of 5 or so. In this
data set there are no outlier pixels, so we don’t correct for them, and leave
the default values at -1 (i.e. don’t do anything).

• Rescale particles? Yes

(Down-scaling particles will speed up computations. Therefore, we often
down-scale particles in the initial stages of processing, in order to speed
up the initial classifications of suitable particles. Once our reconstructions
get close to the Nyquist frequency, we then re-extract the particles without
down-scaling.)

• Re-scaled sized (pixels)? 64

As we will later on also use the same job-type to extract all template-based
auto-picked particles, it may be a good idea to give this job an alias like LoG.
Ignore the Helix tab, and run using a single MPI processor.

Your particles will be extracted into MRC stacks (which always have an .mrcs

extension in relion) in a new directory called Extract/job007/Movies/. It’s
always a good idea to quickly check that all has gone OK by visualising your
extracted particles selecting out: particles.star from the Display: button.
Right-mouse clicking in the display window may be used for example to select
all particles (Invert selection) and calculating the average of all unaligned
particles (Show average of selection).

2.7 Making templates for auto-picking

To calculate templates for the subsequent auto-picking of all micrographs, we
will use the 2D classification job-type. On the I/O tab, select the Extract/job007/particles.star

file (using the Browse button), and on the CTF tab set:

• Do CTF-correction? Yes

(We will perform full phase+amplitude correction inside the Bayesian
framework)

• Ignore CTFs until first peak? No

(This option is occasionally useful, when amplitude correction gives spu-
riously strong low-resolution components, and all particles get classified
together in very few, fuzzy classes.)

On the Optimisation tab, set:

• Number of classes: 50

(For cryo-EM data we like to use on average at least approximately 100
particles per class. For negative stain one may use fewer, e.g. 20-50 par-
ticles per class. However, with this small number of particles, we have

18

observed a better separation into different classes by relaxing these num-
bers. Possibly, always having a minimum of 50 classes is not a bad idea.)

• Regularisation parameter T: 2

(For the exact definition of T, please refer to [13]. For cryo-EM 2D classi-
fication we typically use values of T=2-3, and for 3D classification values
of 3-4. For negative stain sometimes slightly lower values are better. In
general, if your class averages appear very noisy, then lower T; if your
class averages remain too-low resolution, then increase T. The main thing
is to be aware of overfitting high-resolution noise.)

• Number of iterations: 25

(We hardly ever change this)

• Use fast subsets for large data sets? No

(If set to Yes, the first 5 iterations will be done with random subsets of only
K*100 particles, with K being the number of classes; the next 5 with K*300
particles, the next 5 with 30% of the data set; and the final ones with all
data. This was inspired by a cisTEM implementation by Tim Grant, Niko
Grigorieff et al. This option may be useful to make classification of very
large data sets. With hundreds of thousands of particles it is much faster.
For a small data set like this one, it is not needed.)

• Mask diameter (A): 200

(This mask will be applied to all 2D class averages. It will also be used
to remove solvent noise and neighbouring particles in the corner of the
particle images. On one hand, you want to keep the diameter small,
as too much noisy solvent and neighbouring particles may interfere with
alignment. On the other hand, you want to make sure the diameter is
larger than the longest dimension of your particles, as you do not want to
clip off any signal from the class averages.)

• Mask individual particles with zeros? Yes

• Limit resolution E-step to (A): -1

(If a positive value is given, then no frequencies beyond this value will be
included in the alignment. This can also be useful to prevent overfitting.
Here we don’t really need it, but it could have been set to 10-15A any-
way. Difficult classifications, i.e. with very noisy data, often benefit from
limiting the resolution.)

On the Sampling tab we hardly ever change the defaults. Six degrees an-
gular sampling is enough for most projects, although some large icosahedral
viruses may benefit from finer angular samplings. In that case, one could first
run 25 iterations with a sampling of 6 degrees, and then continue that same
run (using the Continue! button) for an additional five iteration (by setting

19

Number of iterations: 30 on the Optimisation tab) with a sampling of say
2 degrees. For this data set, this is NOT necessary at all. It is useful to note
that the same Continue! button may also be used to resume a job that has
somehow failed before, in which case one would not change any of the param-
eters. For continuation of 2D classification , 3D initial model , 3D classification ,
or 3D auto-refine jobs one always needs to specify the _optimiser.star file
from the iteration from which one continues on the I/O tab.

Ignore the Helix tab, and on the Compute tab, set:

• Use parallel disc I/O? Yes

(This way, all MPI slaves will read their own particles from disc. Use this
option if you have a fast (parallel?) file system. Note that non-parallel
file systems may not be able to handle parallel access from multiple MPI
nodes. In such cases one could set this option to No. In that case, only
the master MPI node will read in the particles and send them through the
network to the MPI slaves.)

• Number of pooled particles: 30

(Particles are processed in individual batches by MPI slaves. During each
batch, a stack of particle images is only opened and closed once to im-
prove disk access times. All particle images of a single batch are read
into memory together. The size of these batches is at least one particle
per thread used. The nr pooled particles parameter controls how many
particles are read together for each thread. If it is set to 30 and one uses
8 threads, batches of 30x8=240 particles will be read together. This may
improve performance on systems where disk access, and particularly meta-
data handling of disk access, is a problem. Typically, when using GPUs
we use values of 10-30; when using only CPUs we use much smaller values,
like 3. This option has a modest cost of increased RAM usage.)

• Pre-read all particles into RAM? Yes

(If set to Yes, all particle images will be read into computer memory, which
will greatly speed up calculations on systems with slow disk access. How-
ever, one should of course be careful with the amount of RAM available.
Because particles are read in double-precision, it will take (N * box size
* box size * 4 / (1024 * 1024 * 1024)) Giga-bytes to read N particles into
RAM. If parallel disc I/O is set to Yes, then all MPI slaves will read in all
particles. If parallel disc I/O is set to No, then only the master reads all
particles into RAM and sends those particles through the network to the
MPI slaves during the refinement iterations.)

• Copy particles to scratch directory?

(This is useful if you don’t have enough RAM to pre-read all particles, but
you do have a fast (SSD?) scratch disk on your computer. In that case,

20

specify the name of the scratch disk where you can make a temporary
directory, e.g. /ssd)

• Combine iterations through disc? No

(This way all MPI nodes combine their data at the end of each iteration
through the network. If the network is your main bottle-neck or somehow
causing problems, you can set this option to No. In that case, all MPI
nodes will write/read their data to disc.)

• Use GPU acceleration? Yes

(If you have a suitable GPU, this job will go much faster.)

• Which GPUs to use: 0:1:2:3

(This will depend on the available GPUs on your system! If you leave this
empty, the program will try to figure out which GPUs to use, but you can
explicitly tell it which GPU IDs , e.g. 0 or 1, to use. If you use multiple
MPI-processors, you can run each MPI process on a specified GPU. GPU
IDs for different MPI processes are separated by colons, e.g. 0:1:0:1 will
run MPI process 0 and 2 on GPU 0, and MPI process 1 and 3 will run on
GPU 1.)

On the Running tab, specify the ’Number of MPI processors’ and the ’Num-
ber of threads’ to use. The total number of requested CPUs, or cores, will be
the product of the two values. Note that 2D classification , 3D classification ,
3D initial model and 3D auto-refine use one MPI process as a master, which
does not do any calculations itself, but sends jobs to the other MPI proces-
sors. Therefore, if one specifies 4 GPUs above, running with five MPI pro-
cesses would be a good idea. Threads offer the advantage of more efficient
RAM usage, whereas MPI parallelization scales better than threads. Often, for
3D classification and 3D auto-refine jobs you will probably want to use many
threads in order to share the available RAM on each (multi-core) computing
node. 2D classification is less memory-intensive, so you may not need so many
threads. However, the points where communication between MPI processors
(the bottle-neck in scalability there) becomes limiting in comparison with run-
ning more threads, is different on many different clusters, so you may need to
play with these parameters to get optimal performance for your setup. We pre-
read all particles into RAM, used parallel disc I/O, 4 GPUs and 5 MPI process
with 6 threads each, and our job finished in approximately three minutes.

Because we will run more 2D classification jobs, it may again be a good idea
to use a meaningful alias, for example LoG. You can look at the resulting
class averages using the Display: button to select out: run_it025_model.star

from. On the pop-up window, you may want to choose to look at the class
averages in a specific order, e.g. based on rlnClassDistribution (in re-
verse order, i.e. from high-to-low instead of the default low-to-high) or on
rlnAccuracyRotations.

21

2.8 Selecting templates for auto-picking

Selection of suitable class average images is done in the Subset selection job-
type. On the I/O tab, remove the picked coords entry from before, and select

the Class2D/LoG/run_it025_model.star file using the Browse button on the
line with Select classes from model.star:.

On the Class options tab, give:

• Re-center the class averages? Yes

(This option allows automated centering of the 2D class averages. The
images are centered based on their center-of-mass, and the calculations
for this require that the particles are WHITE (not black). Re-centering
is often necessary, as class averages may become non-centered in the 2D
classification run. In particular when using class average images for auto-
picking it is important that the are centered, as otherwise all your particle
coordinates will become systematically off-centered.)

• Regroup the particles? No

(This option is useful when there are very few (selected) particles on in-
dividual micrographs, in which case the estimation of noise power spectra
and scale factors become unstable. By default, the latter are calculated
independently per micrograph. This option allows to grouping particles
from multiple micrographs together in these calcutaions. relion will warn
you (in classification or auto-refine runs) when your groups become too
small.)

Ignore the other tabs, and use an alias like templates4autopick. You may
again want to order the class averages based on their rlnClassDistribution.
Select a few class averages that represent different views of your particle. Don’t
repeat very similar views, and don’t include bad class averages. We selected four
templates from our run. Selection is done by left-clicking on the class averages.
You can save your selection of class averages from the right-click pop-up menu
using the Save selected classes option.

2.9 Auto-picking

We will now use the selected 2D class averages as templates in a reference-based
run of the Auto-picking job-type. However, before we will run the auto-picking
on all micrographs, we will need to optimise four of its main parameters on the
autopicking tab: the Picking threshold, the Minimum inter-particle distance,
the Maximum stddev noise, and the Minimum avg noise. This will be done
on only a few micrographs in order to save time. We will use the same five
micrographs we selected for the LoG-based auto-picking before.

Then, on the I/O tab of the Auto-picking job-type, set:

22

• Input micrographs for autopick: Select/5mics/micrographs.star

• Pixel size in micrographs (A) -1

(The pixel size will be set automatically from the information in the input
STAR file.)

• 2D references: Select/templates4autopick/class averages.star

• OR: provide a 3D reference? No

• OR: use Laplacian-of-Gaussian? No

Ignore the Laplacian , and on the References tab, set:

• Lowpass filter references (A): 20

(It is very important to use a low-pass filter that is significantly LOWER
than the final resolution you aim to obtain from the data, to keep “Einstein-
from-noise” artifacts at bay)

• Highpass filter (A): -1

(If you give a positive value, e.g. 200, then the micrograph will be high-
pass filtered prior to autopicking. This can help in case of strong grey-scale
gradients across the micrograph.)

• Pixel size in references (A): 3.54

(If a negative value is given, the references are assumed to be on the
same scale as the input micrographs. If this is not the case, e.g. because
you rescaled particles that were used to create the references upon their
extraction, then provide a positive value with the correct pixel size in the
references here. As we downscaled the particles by a factor of 4
(i.e. from 256 to 64) in the Particle extraction job, the pixel size
in the references is now 4 ∗ 0.885 = 3.54Å.)

• Mask diameter (A) -1

(When a negative value is given, the diameter of the mask will be deter-
mined automatically from the input reference images to be the same as
the one used in the 2D classification job.)

• Angular sampling (deg): 5

(This value seems to work fine in almost all cases.)

• References have inverted contrast? Yes

(Because we have black particles in the micrographs, and the references
we will use are white.)

• Are References CTF corrected? Yes

(Because we performed 2D class averaging with the CTF correction.)

23

• Ignore CTFs until first peak: No

(Only use this option if you also did so in the 2D classification job that
you used to create the references.)

On the autopicking tab, set:

• Picking threshold: 0.8

(This is the threshold in the FOM maps for the peak-search algorithms.
Particles with FOMs below this value will not be picked.)

• Minimum inter-particle distance (A): 200

(This is the maximum allowed distance between two neighbouring par-
ticles. An iterative clustering algorithm will remove particles that are
nearer than this distance to each other. Useful values for this parameter
are often in the range of 50-60% of the particle diameter.)

• Maximum stddev noise: -1

(This is useful to prevent picking in carbon areas, or areas with big con-
tamination features. Peaks in areas where the background standard de-
viation in the normalized micrographs is higher than this value will be
ignored. Useful values are probably in the range 1.0 to 1.2. Set to -1 to
switch off the feature to eliminate peaks due to high background standard
deviations.)

• Minimum avg noise: -999

(This is useful to prevent picking in carbon areas, or areas with big contam-
ination features. Peaks in areas where the background standard deviation
in the normalized micrographs is higher than this value will be ignored.
Useful values are probably in the range -0.5 to 0. Set to -999 to switch off
the feature to eliminate peaks due to low average background densities.)

• Write FOM maps? Yes

(See the explanation below.)

• Read FOM maps? No

(See the explanation below.)

• Shrink factor: 0

(By setting shrink to 0, the autopicking program will downscale the mi-
crographs to the resolution of the lowpass filter on the references. This
will go much faster and require less memory, which is convenient for doing
this tutorial quickly. Values between 0 and 1 will be the resulting fraction
of the micrograph size. Note that this will lead to somewhat less accu-
rate picking than using shrink=1, i.e. no downscaling. A more detailed
description of this new parameter is given in the next subsection.)

24

• Use GPU acceleration? Yes

(Only if you have a suitable GPU!)

• Which GPUs to use: 0

(If you leave this empty, the program will try to figure out which GPUs
to use, but you can explicitly tell it which GPU IDs , e.g. 0 or 1, to use.
If you use multiple MPI-processors (not for this case!), you can run each
MPI process on a specified GPU. GPU IDs for different MPI processes are
separated by colons, e.g. 0:1:0:1 will run MPI process 0 and 2 on GPU 0,
and MPI process 1 and 3 will run on GPU 1.)

Ignore the Helix tab, and run using a single MPI processor on the Running tab .
Perhaps an alias like optimise_params would be meaningful? When using
GPU-acceleration, the job completes in half a minute.

The expensive part of this calculation is to calculate a probability-based figure-
of-merit (related to the cross-correlation coefficient between each rotated ref-
erence and all positions in the micrographs. This calculation is followed by
a much faster peak-detection algorithm that uses the threshold and minimum
distance parameters mentioned above. Because these parameters need to be
optimised, the program will write out so-called FOM maps as specified on the
References tab. These are two large (micrograph-sized) files per reference. To
avoid running into hard disc I/O problems, the autopicking program can only
be run sequentially (hence the single MPI processor above) when writing out
FOM maps.

Once the FOM maps have been written to disc they can be used to optimise
the picking parameters much faster. First, examine the auto-picked particles
with the current settings using the coords_suffix_autopick option from the
Display: button of the job you just ran. Note that the display window will take

its parameters (like size and sigma-contrast) from the last Manual picking job

you executed. You can actually change those parameters in the Manual picking

job-type, and save the settings use the option Save job settings from the
top left Jobs menu. Do this, after you’ve set on the following on the Colors

tab:

• Blue<>red color particles? Yes

• MetaDataLabel for color: rlnAutopickFigureOfMerit

• STAR file with color label:

Leave this empty.

• Blue value: 1

• Red value: 0

Executing the job on the Running tab will produce a similar GUI with pick

and CTF buttons as before. Open both micrographs from the display window,

25

and decide whether you would like to pick more or less particles (i.e. decrease
or increase the threshold) and whether they could be closer together or not
(fot setting the minimum inter-particle distance). Note that each particle is
colored from red (very low FOM) to blue (very high FOM). You can leave the
display windows for both micrographs open, while you proceed with the next
step.

Select the AutoPick/optimise_params job from the Finished jobs , and change

the parameters on the autopicking tab. Also, change:

• Write FOM maps? No

• Read FOM maps? Yes

When executing by clicking the Continue! button, this will re-read the previ-
ously written FOM maps from disc instead of re-doing all FOM calculations.
The subsequent calculation of the new coordinates will then be done in a few
seconds. Afterwards, you can right-click in the micrograph display windows
and select Reload coordinates from the pop-up menu to read in the new set
of coordinates. This way you can quickly optimise the two parameters.

Have a play around with all three parameters to see how they change the picking
results. Once you know the parameters you want to use for auto-picking of all
micrographs, you click the Auto-picking option in the job-type browser on the

top left of the GUI to select a job with a Run! button. On the I/O tab, you
replace the input micrographs star file with the 2 selected micrographs with the
one from the original CTF estimation job (CtfFind/job003/micrographs_ctf.star).
Leave everything as it was on the References tab, and on the autopicking tab
set:

• Picking threshold: 0.0

• Minimum inter-particle distance (A): 100

(Good values are often around 50-70% of the particle diameter.)

• Maximum stddev noise: -1

• Minimum avg noise: -999

• Write FOM maps? No

• Read FOM maps? No

This time, the job may be run in parallel (as no FOM maps will be written
out). On the Running tab, specify the number of cores to run auto-picking on.
The maximum useful number of MPI processors is the number of micrographs
in the input star file. Using only a single MPI process and a single GPU, our
calculation still finisged in about one minute. We used as alias template.

Note that there is an important difference in how the Continue! button works
depending on whether you read/write FOM maps or not. When you either write

26

or read the FOM maps and you click Continue! , the program will re-pick all
input micrographs (typically only a few). However, when you do not read, nor
write FOM maps, i.e. in the second job where you’ll autopick all micrographs,
upon clicking the Continue! button, only those micrographs that were not au-
topicked yet will be done. This is useful in the iterative running of scheduled
jobs, e.g. for on-the-fly data processing during your microscopy session. Also
see section 14.5 for more details. If you want to-repick all micrographs with a
new set of parameters (instead of doing only unfinished micrographs), then click
the Auto-picking entry on the jobtype-browser on the left to get a Run! button
instead, which will then make a new output directory.

You can again check the results by clicking the coords_suffix_autopick option
from the Display: button. Some people like to manually go over all micrographs
to remove false positives. For example, carbon edges or high-contrast artifacts
on the micrographs are often mistaken for particles. You can do this for each
micrograph using the pop-up window from the Display: button. Remove par-
ticles using the middle-mouse button; you can hold it down to remove many
false positives in larger areas. Remember to save the new coordinates using the
right-mouse click pop-up menu!

Once you’re happy with the overall results, in order to save disc space you
may want to delete the FOM-maps that were written out in the first step.
You can use the Gentle clean option from the Job actions button to do that
conveniently.

Once you are happy with your entire set of coordinates, you will need to re-
run a Particle extraction job, keeping everything as before, and change the
Input coordinates for the newly generated, autopick ones. This will gener-
ate your initial single-particle data set that will be used for further refinements
below. Perhaps an alias like template would be meaning ful?

2.9.1 The shrink parameter

To enable faster processing, relion implements a filtering option of the micro-
graphs through the command-line argument --shrink. The simplest way to
use it is to simply use --shrink 0. But it can be used with much more control.
If this is desired, it works in the following way:

The default value for --shrink is 1.0, which has no effect and does not fil-
ter the micrographs at all. This is identical behaviour to versions prior to the
relion-2.0 autopicker.

• --shrink val = 0 results in a micrograph lowpassed to --lowpass, the
same as that of the reference templates. This is recommended use for
single-particle analysis (but not for helical picking).

• --shrink 0 < val ≤ 1 results in a size = val ·micrograph size, i.e. val is

27

a scaling factor applied to the micrographs original size.

• --shrink val > 1 results in a size = val − (val mod 2), i.e. the small-
est even integer value lower than val. This is then a way to give the
micrographs a specific (even) integer size.

If the new size is smaller than --lowpass, this results in a non-fatal warning,
since this limits resolution beyond the requested (or default) resolution. Because
the relion autopicker does many FFTs, the size of micrographs is now also
automatically adjusted to avoid major pitfalls of FFT computation. A note
of this and how it can be overridden is displayed in the initial output of each
autopicking the user performs.

3 Reference-free 2D class averaging

We almost always use reference-free 2D class averaging to throw away bad par-
ticles. Although we often try to only include good particles for the particle
extraction step in the previous section (for example by manually supervising
the auto-picking results, and by sorting the extracted particles), most of the
times there are still particles in the data set that do not belong there. Because
they do not average well together, they often go to relatively small classes that
yield ugly 2D class averages. Throwing those away then becomes an efficient
way of cleaning up your data.

3.1 Running the job

Most options will remain the same as explained when we were generating tem-
plates for the auto-picking in the previous section, but on the I/O tab of the

2D classification job-type, set:

• Input images STAR file: Extract/template/particles.star

and on the Optimisation tab, we used:

• Number of classes: 100

(because we now have more particles.)

You could use an alias like template. Using 4 GPUs, and 5 MPI processes,
each with 6 threads, this job took 20 minutes on our computer. Perhaps a good
time for a cup of coffee?

After the job has finished, we can launch a Subset selection job, with the
_model.star file from this run as input. An alias like class2d_template may
be meaningful. Now select all nice-looking classes by clicking on them (and/or
using the right-mouse pop-up menu option Select all classes above). At

28

this point, if you would have used a low threshold in the auto-picking pro-
cedure, you should be very wary of “Einstein-from-noise” classes, which look
like low-resolution ghosts of the templates used to pick them, on which high-
resolution noise may have accumulated. Avoid those in the selection. After all
good classes have been selected use the right-mouse pop-up menu option to save
the selection.

Note that this procedure of selecting good classes may be repeated several
times.

3.2 Analysing the results in more detail

If you are in a hurry to get through this tutorial, you can skip this sub-section.
It contains more detailed information for the interested reader.

For every iteration of 2D or 3D classification relion performs, it writes out a
set of files. For the last iteration of our 2D class averaging calculation these
are:

• Class2D/template/run_it025_classes.mrcs is the MRC stack with the result-
ing class averages. These are the images that will be displayed in the relion

GUI when you select the _model.star file from the Display: button on the
main GUI. Note that relion performs full CTF correction (if selected on the
GUI), so your class averages are probably white on a black background. If the
data is good, often they are very much like projections of a low-pass filtered
atomic model. The quality of your 2D class averages are a very good indication
of how good your 3D map will become. We like to see internal structure within
projections of protein domains, and the solvent area around you particles should
ideally be flat. Radially extending streaks in the solvent region are a typical sign
of overfitting. If this happens, you could try to limit the resolution in the E-step
of the 2D classification algorithm.

• Class2D/template/run_it025_model.star contains the model parameters that
are refined besides the actual class averages (i.e. the distribution of the im-
ages over the classes, the spherical average of the signal-to-noise ratios in the
reconstructed structures, the noise spectra of all groups, etc. Have a look at
this file using the less command. In particular, check the distribution of parti-
cles over each class in the table data_model_classes. If you compare this with
the class averages themselves, you will see that particles with few classes are
low-resolution, while classes with many particles are high-resolution. This is an
important feature of the Bayesian approach, as averaging over fewer particles will
naturally lead to lower signal-to-noise ratios in the average. The estimated spec-
tral signal-to-noise ratios for each class are stored in the data_model_class_N

tables, where N is the number of each class. Likewise, the estimated noise
spectra for each group are stored in the tables called data_model_group_N. The
table data_model_groups stores a refined intensity scale-factor for each group:
groups with values higher than one have a stronger signal than the average,
relatively low-signal groups have values lower than one. These values are often

29

correlated with the defocus, but also depend on accumulated contamination and
ice thickness.

• Class2D/template/run_it025_data.star contains all metadata related to the
individual particles. Besides the information in the input particles.star file,
there is now additional information about the optimal orientations, the optimal
class assignment, the contribution to the log-likelihood, etc. Note that this file
can be used again as input for a new refinement, as the star file format remains
the same.

• Class2D/template/run_it025_optimiser.star contains some general informa-
tion about the refinement process that is necessary for restarting an unfinished
run. For example, if you think the process did not converge yet after 25 iterations
(you could compare the class averages from iterations 24 and 25 to assess that),

you could select this job in the Finished jobs panel, and on the I/O tab select

this file for Continue from here, and then set Number of iterations: 40 on
the Optimisation tab. The job will then restart at iteration 26 and run until
iteration 40. You might also choose to use a finer angular or translational sam-
pling rate on the Sampling tab. Another useful feature of the optimiser.star files
is that it’s first line contains a comment with the exact command line argument
that was given to this run.

• Class2D/template/run_it025_sampling.star contains information about the
employed sampling rates. This file is also necessary for restarting.

3.3 Making groups

If you are in a hurry to get through this tutorial, you can skip this sub-section.
It contains more detailed information for the interested reader.

relion groups particles together to do two things: estimate their average noise
power spectrum and estimate a single-number intensity scale factor that de-
scribes differences in overall signal-to-noise ratios between different parts of the
data, e.g. due to ice thickness, defocus or contamination.

The default behaviour is to treat all particles from each micrograph as a separate
group. This behaviour is fine if you have many particles per micrograph, but
when you are using a high magnification, your sample is very diluted, or your
final selection contains only a few particles per micrograph, then the estimation
of the intensity scale factor (and the noise spectra) may become unstable. We
generally recommend to have at least 10-20 particles in each group, but do note
that initial numbers of particles per group may become much smaller after 2D
and 3D classification.

In cases with few particles per micrograph we recommend to group particles
from multiple micrographs together. For this purpose, the GUI implements
a convenient functionality in the Subset selection job-type: when selecting a
_model.star file on the I/O tab, one can use Regroup particles? Yes and

30

Approximate nr of groups: 5 on the Class options tab to re-group all par-
ticles into 5 groups. (The actual number may vary somewhat from the input
value, hence the “Approximate” on the input field.) This way, complicated
grouping procedures in previous releases of relion may be avoided. As the
micrographs in this tutorial do contain sufficient particles, we will not use this
procedure now.

Please note that the groups in relion are very different from defocus groups
that are sometimes used in other programs. relion will always use per-particle
(anisotropic) CTF correction, irrespective of the groups used.

4 De novo 3D model generation

relion uses a Stochastic Gradient Descent (SGD) algorithm, as was first intro-
duced in the cryoSPARC program [9], to generate a de novo 3D initial model

from the 2D particles. Provided you have a reasonable distribution of viewing
directions, and your data were good enough to yield detailed class averages in
2D classification , this algorithm is likely to yield a suitable, low-resolution model
that can subsequently be used for 3D classification or 3D auto-refine .

4.1 Running the job

Select the Select/class2d_template/particles.star file on the I/O tab of

the 3D initial model jobtype. Everything is aready in order on the CTF . Fill
in the optimisation tab as follows (leave the defaults for the angular and offset
sampling):

• Number of classes 1

(Sometimes, using more than one class may help in providing a ’sink’ for
sub-optimal particles that may still exist in the data set. The additional
argument --sgd_skip_anneal may then also be useful. In this case, we
will just use a single class in order to speed up things).

• Mask diameter (A) 200

(The same as before).

• Flatten and enforce non-negative solvent Yes

• Symmetry C1

(If you don’t know what the symmetry is, it is probably best to start with
a C1 reconstruction. Also, some higher-symmetry objects may be easier
to solve by SGD in C1 than in their correct space group. This data set is
great data, and would also work in the correct point group D2. However,
to illustrate how to proceed from C1 to D2, we will run the SGD in C1.)

31

Typically, in first instance one would not change anything on the SGD tab,
as the default are suitable for many cases. However, in order to speed things
up for this tutorial, we will only perform half the default number of iterations.
Therefore change:

• Number of initial iterations 25

• Number of in-between iterations 100

• Number of final iterations 25

On the Compute tab, optimise things for your system. You may well be able to
pre-read the few thousand particles into RAM again. GPU acceleration will also
yield speedups, though multiple maximisation steps during each iteration will
slow things down compared to standard 2D or 3D refinements or classifications.
We used an alias of symC1 for this job. Using 4 GPU cards, 5 MPI processes
and 6 threads per MPI process, this run took approximately 15 minutes on
our system. If you didn’t get that coffee before, perhaps now is a good time
too...

4.2 Analysing the results

Look at the output volume (InitialModel/job015/run_it150_class001.mrc)
with a 3D viewer like UCSF chimera. If you recognise additional point group
symmetry at this point, then you will need to align the symmetry axes with the
main X,Y,Z axes of the coordinate system, according to relion’s conventions.
Use the following command line instruction to do this:

relion_align_symmetry --i InitialModel/job015/run_it150_class001.mrc \

--o InitialModel/job015/run_it150_class001_alignD2.mrc --sym D2

And after confirming in UCSF chimera or relion_display that the symmetry
axes in the map are now indeed aligned with the X, Y and Z-axes, we can now
impose D2 symmetry using:

relion_image_handler --i InitialModel/job015/run_it150_class001_alignD2.mrc \

--o InitialModel/job015/run_it150_class001_symD2.mrc --sym D2

The output map of the latter command should be similar to the input map.
You could check this by:

relion_display --i InitialModel/job015/run_it150_class001_alignD2.mrc &

relion_display --i InitialModel/job015/run_it150_class001_symD2.mrc &

5 Unsupervised 3D classification

All data sets are heterogeneous! The question is how much you are willing to
tolerate. relion’s 3D multi-reference refinement procedure provides a powerful

32

unsupervised 3D classification approach.

5.1 Running the job

Unsupervised 3D classifcation may be run from the 3D classification job-type.
On the I/O tab set:

• Input images STAR file: Select/class2d template/particles.star

• Reference map: InitialModel/symC1/run it150 class001 symD2.mrc

(Note that this map does not appear in the Browse button as it is not part
of the pipeline. You can either type it’s name into the entry field, or first
import the map using the Import jobtype. Also note that, because we
wil be running in symmetry C1, we could have also chosen to use the non-
symmetric InitialModel/job015/run_it150_class001.mrc. However,
already being in the right symmetry setting is more convenient later on.)

• Reference mask (optional):

(Leave this empty. This is the place where we for example provided
large/small-subunit masks for our focussed ribosome refinements. If left
empty, a spherical mask with the particle diameter given on the Optimisation

tab will be used. This introduces the least bias into the classification.)

On the Reference tab set:

• Ref. map is on absolute greyscale: Yes

(Given that this map was reconstructed from this data set, it is already on
the correct greyscale. Any map that is not reconstructed from the same
data in relion should probably be considered as not being on the correct
greyscale.)

• Initial low-pass filter (A): 50

(One should NOT use high-resolution starting models as they may intro-
duce bias into the refinement process. As also explained in [12], one should
filter the initial map as much as one can. For ribosome we often use 70Å,
for smaller particles we typically use values of 40-60Å.)

• Symmetry: C1

(Although we know that this sample has D2 symmetry, it is often a good
idea to perform an initial classification without any symmetry,
so bad particles, which are not symmetric, can get separated from proper
ones, and the symmetry can be verified in the reconstructed maps.)

On the CTF tab set:

• Do CTF correction? Yes

33

• Has reference been CTF-corrected? Yes

(As this model was made using CTF-correction in the SGD.)

• Ignore CTFs until first peak? No

(Only use this option if you also did so in the 2D classification job that
you used to create the references.)

On the Optimisation tab set:

• Number of classes: 4

(Using more classes will divide the data set into more subsets, potentially
describing more variability. The computational costs scales linearly with
the number of classes, both in terms of CPU time and required computer
memory.)

• Regularisation parameter T: 4

For the exact definition of T, please refer to [13]. For cryo-EM 2D classi-
fication we typically use values of T=1-2, and for 3D classification values
of 2-4. For negative stain sometimes slightly lower values are better. In
general, if your class averages appear noisy, then lower T; if your class
averages remain too-low resolution, then increase T. The main thing is to
be aware of overfitting high-resolution noise.

• Number of iterations: 25

(We typically do not change this.)

• Use fast subsets (for large data sets)?: No

(This option will significantly speed up calculations for data sets of hun-
dreds of thousands pf particles. However, sometimes performance is af-
fected too. For small data sets like this one, we do not recommend using
this option.)

• Mask diameter (A): 200

(Just use the same value as we did before in the 2D classification job-type.)

• Mask individual particles with zeros? Yes

• Limit resolution E-step to (A): -1

(If a positive value is given, then no frequencies beyond this value will be
included in the alignment. This can also be useful to prevent overfitting.
Here we don’t really need it, but it could have been set to 10-15A anyway.)

On the Sampling tab one usually does not need to change anything (only for
large and highly symmetric particles, like icosahedral viruses, does one typically
use a 3.7 degree angular sampling at this point). Ignore the Helix tab, and fill in
the Compute tab like you did for the previous 2D-classification . Again, on the

34

Running tab, one may specify the Number of MPI processors and threads to

use. As explained for the 2D classification job-type, 3D classification takes more
memory than 2D classification, so often more threads are used. However, in this
case the images are rather small and RAM-shortage may not be such a big issue.
Perhaps you could use an alias like first_exhaustive, to indicate this is our
first 3D classification and it uses exhaustive angular searches? On our computer
with 4 GPUs, 5 MPIs and 6 threads, this calculation took approximately 10
minutes.

When analysing the resulting class reconstructions, it is extremely useful to
also look at them in slices, not only as a thresholded map in for example UCSF
chimera. In the slices view you will get a much better impression of unresolved
heterogeneity, which will show up as fuzzy or streaked regions in the slices. Slices
also give a good impression of the flatness of the solvent region. Use the Display:

button and select any of the reconstructions from the last iteration to open a
slices-view in relion.

When looking at your rendered maps in 3D, e.g. using UCSF chimera, it
is often a good idea to fit them all into the best one, as maps may rotate
slightly during refinement. In chimera, we use the Tools -> Volume Data ->

Fit in Map tool for that. For looking at multiple maps alongside each other,
we also like the Tools -> Structure Comparison -> Tile Structures tool,
combined with the independent center-of-rotation method on the Viewing win-
dow.

As was the case for the 2D classification, one can again use the Subset selection

to select a subset of the particles assigned to one or more classes. On the I/O

tab select the _model.star file from the last iteration. The resulting display
window will show central slices through the 4 refined models. Select the best
classes, and save the corresponding particles using the right-mouse pop-up menu.
Use an alias like class3d_first_exhaustive.

5.2 Analysing the results in more detail

Again, if you are in a hurry to get through this tutorial, you can skip this sub-
section. It contains more detailed information for the interested reader.

The output files are basically the same as for the 2D classification run (we’re
actually using the same code for 2D and 3D refinements). The only differ-
ence is that the map for each class is saved as a separate MRC map, e.g.
run_it025_class00?.mrc, as opposed to the single MRC stack with 2D class
averages that was output before.

As before, smaller classes will be low-pass filtered more strongly than large
classes, and the spectral signal-to-noise ratios are stored in the data_model_class_N
tables (with N = 1, . . . ,K) of the _model.star files. Perhaps now is a good

35

time to introduce two handy scripts that are useful to extract any type of data
from star files. Try typing:

relion_star_printtable Class3D/first_exhaustive/run_it025_model.star

data_model_class_1 rlnResolution rlnSsnrMap

It will print the two columns with the resolution (rlnResolution) and the
spectral signal-to-noise ratio (rlnSsnrMap) from table data_model_class_1 to
the screen. You could redirect this to a file for subsequent plotting in your
favourite program. Alternatively, if gnuplot is installed on your system, you
may type:

relion_star_plottable Class3D/first_exhaustive/run_it025_model.star

data_model_class_1 rlnResolution rlnSsnrMap

To check whether your run had converged, (as mentioned above) you could also
monitor:

grep _rlnChangesOptimalClasses Class3D/first_exhaustive/run_it???_optimiser.star

As you may appreciate by now: the star files are a very convenient way of han-
dling many different types of input and output data. Linux shell commands like
grep and awk, possibly combined into scripts like relion_star_printtable,
provide you with a flexible and powerful way to analyze your results.

6 High-resolution 3D refinement

Once a subset of sufficient homogeneity has been selected, one may use the
3D auto-refine procedure in relion to refine this subset to high resolution in
a fully automated manner. This procedure employs the so-called gold-standard
way to calculate Fourier Shell Correlation (FSC) from independently refined
half-reconstructions in order to estimate resolution, so that self-enhancing over-
fitting may be avoided [15]. Combined with a procedure to estimate the accuracy
of the angular assignments [14], it automatically determines when a refinement
has converged. Thereby, this procedure requires very little user input, i.e. it
remains objective, and has been observed to yield excellent maps for many data
sets. Another advantage is that one typically only needs to run it once, as there
are hardly any parameters to optimize.

However, before we start our high-resolution refinement, we should first re-
extract our current set of selected particles with less down-scaling, so that we
can potentially go to higher resolution. To do this, go to the Particle extraction

jobtype on the GUI, and on the I/O tab give:

• micrograph STAR file: CtfFind/job003/micrographs ctf.star

(This should still be there.)

36

• Coordinate-file suffix:

(Leave this empty now.)

• OR re-extract refined particles? Yes

• Refined particles STAR file: Select/class3d first exhaustive/particles.star

(Now, we will use only the refined subset of selected particles.)

• Reset the refiend offsets to zero? No

(This would discard the translational offsets from the previous classifica-
tion runs.)

• OR: re-center refined coordinates? Yes

(This will re-center all the particles according to the aligned offsets from
the 3D classification job above.)

• Recenter on - X, Y, Z (pix) 0 0 0

(We want to keep the centre of the molecule in the middle of the box.)

• Manually set pixel size? No

(This is only necessary when the input micrograph star file does NOT
contain CTF information.)

And on the extract tab, we keep everything as it was, except:

• Particle box size (pix) 360

(we will use a larger box, so that de-localised CTF signals can be better
modeled. This is important for the CTF refinement later on.)

• Rescale particles? Yes

(to prevent working with very large images, let’s down-sample to a pixel
size of 360*0.885/256=1.244 Å. This will limit our maximum achievable
resolution to 2.5 Å, which is probably enough for such a small data set.)

• Re-scaled size (pixels): 256

We used the alias best3dclass_bigbox for this job.

In addition, we will need to rescale the best map obtained thus far to the 256-
pixel box size. This is done from the command-line:

relion_image_handler --i Class3D/first_exhaustive/run_it025_class001.mrc \

--angpix 3.54 --rescale_angpix 1.244 --new_box 256 \

--o Class3D/first_exhaustive/run_it025_class001_box256.mrc

37

6.1 Running the auto-refine job

On the I/O tab of the 3D auto-refine job-type set:

• Input images STAR file: Extract/best3dclass bigbox/particles.star

• Reference map: Class3D/first exhaustive/run it025 class001 box256.mrc

(Note this one is again not directly available through the Browse button.)

• Reference mask (optional):

(leave this empty for now)

On the Reference tab, set:

• Ref. map is on absolute greyscale? No

(because of the different normalisation of down-scaled images, the rescaled
map is no longer on the correct absolute grey scale. Setting this option
to ’No’ is therefore important, and will correct the greyscale in the first
iteration of the refinement.)

• Initial low-pass filter (A) 50

(We typically start auto-refinements from low-pass filtered maps to pre-
vent bias towards high-frequency components in the map, and to maintain
the “gold-standard” of completely independent refinements at resolutions
higher than the initial one.)

• Symmetry D2

(We now aim for high-resolution refinement, so imposing symmetry will
effectively quadruple the number of particles.)

Parameters on the CTF , Optimisation and Auto-sampling tabs remain the same

as they were in the 3D classification job. Note that the orientational sampling
rates on the Sampling tab will only be used in the first few iterations, from there
on the algorithm will automatically increase the angular sampling rates until
convergence. Therefore, for all refinements with less than octahedral or icosa-
hedral symmetry, we typically use the default angular sampling of 7.5 degrees,
and local searches from a sampling of 1.8 degrees. Only for higher symmetry
refinements, we use 3.7 degrees sampling and perform local searches from 0.9
degrees.

As the MPI nodes are divided between one master (who does nothing else than
bossing the others around) and two sets of slaves who do all the work on the
two half-sets, it is most efficient to use an odd number of MPI processors, and
the minimum number of MPI processes for 3D auto-refine jobs is 3. Memory
requirements may increase significantly at the final iteration, as all frequencies
until Nyquist will be taken into account, so for larger sized boxes than the
ones in this test data set you may want to run with as many threads as you

38

have cores on your cluster nodes. Perhaps an alias like first3dref would be
meaningful?

6.2 Analysing the results

Also the output files are largely the same as for the 3D classification job. How-
ever, at every iteration the program writes out two run_it0??_half?_model.star
and two run_it0??_half?_class001.mrc files: one for each independently re-
fined half of the data. Only upon convergence a single run_model.star and
run_class001.mrc file will be written out (without _it0?? in their names).
Because in the last iteration the two independent half-reconstructions are joined
together, the resolution will typically improve significantly in the last iteration.
Because the program will use all data out to Nyquist frequency, this iteration
also requires more memory and CPU.

Note that the automated increase in angular sampling is an important aspect
of the auto-refine procedure. It is based on signal-to-noise considerations that
are explained in [14], to estimate the accuracy of the angular and translational
assignments. The program will not use finer angular and translational sampling
rates than it deems necessary (because it would not improve the results). The
estimated accuracies and employed sampling rates, together with current reso-
lution estimates are all stored in the _optimiser.star and _model.star files,
but may also be extracted from the stdout file. For example, try:

grep Auto Refine3D/first3dref/run.out

7 Mask creation & Postprocessing

After performing a 3D auto-refinement, the map needs to be sharpened. Also,
the gold-standard FSC curves inside the auto-refine procedures only use un-
masked maps (unless you’ve used the option Use solvent-flattened FSCs).
This means that the actual resolution is under-estimated during the actual re-
finement, because noise in the solvent region will lower the FSC curve. re-

lion’s procedure for B-factor sharpening and calculating masked FSC curves
[3] is called “post-processing”. First however, we’ll need to make a mask to
define where the protein ends and the solvent region starts. This is done using
the Mask Creation job-type.

7.1 Making a mask

On the I/O tab, select the output map from the finished 3D auto-refine job:

Refine3D/first3dref/run_class001.mrc. On the Mask tab set:

39

• Lowpass filter map (A): 15

(A 15Å low-pass filter seems to be a good choice for smooth solvent masks
for many proteins.)

• Pixel size (A): -1

(This value will be taken automatically from the header of the input map.)

• Initial binarisation threshold: 0.005

(This should be a threshold at which rendering of the low-pass filtered
map in for example chimera shows absolutely no noisy spots outside
the protein area. Move the threshold up and down to find a suitable
spot. Remember that one can use the command-line program called
relion_image_handler with the options --lowpass 15 --angpix 1.244

to get a low-pass filtered version of an input map. Often good values for
the initial threshold are around 0.01-0.04.)

• Extend binary map this many pixels: 0

(The threshold above is used to generate a black-and-white mask. The
white volume in this map will be grown this many pixels in all directions.
Use this to make your initial binary mask less tight.)

• Add a soft-edge of this many pixels: 6

(This will put a cosine-shaped soft edge on your masks. This is impor-
tant, as the correction procedure that measures the effect of the mask on
the FSC curve may be quite sensitive to too sharp masks. As the mask
generation is relatively quick, we often play with the mask parameters to
get the best resolution estimate.)

Ignore the Helix tab and use an alias like first3dref. Note that you can run
the mask create program with multiple threads to accelerate this step. You
can look at slices through the resulting mask using the Display: button, or
you can load the mask into UCSF chimera. The latter may be a good idea,
together with the map from the auto-refine procedure, to confirm that the masks
encapsulates the entire structure, but does not leave a lot of solvent inside the
mask. You can continue the same job with new settings for the mask generation
until you have found a mask you like.

7.2 Postprocessing

Now select the Post-processing job-type, and on the I/O tab, set:

• One of the 2 unfiltered half-maps:

Refine3D/first3dref/run half1 class001 unfil.mrc

• Solvent mask: MaskCreate/first3dref/mask.mrc

40

• Calibrated pixel size (A): 1.244

(Sometimes you find out when you start building a model that what you
thought was the correct pixel size, in fact was off by several percent. Inside
relion, everything up until this point was still consistent. so you do not
need to re-refine your map and/or re-classify your data. All you need to
do is provide the correct pixel size here for your correct map and final
resolution estimation.)

On the Sharpen tab, set:

• Estimate B-factor automatically: Yes

(This procedure is based on the classic Rosenthal and Henderson paper
[11], and will need the final resolution to extend significantly beyond 10
Å. If your map does not reach that resolution, you may want to use your
own “ad-hoc” B-factor instead.)

• Lowest resolution for auto-B fit (A): 10

(This is usually not changed.)

• Use your own B-factor? No

• Perform MTF correction? No

(As we provided an MTF file when we imported the movies, MTF correc-
tion has already been performed inside the refinement.)

On the Filter tab, set:

• Skip FSC-weighting? No

(This option is sometimes useful to analyse regions of the map in which
the resolution extends beyond the overall resolution of the map. This is
not the case now.)

Run the job (no need for a cluster, as this job will run very quickly) and use an
alias like first3dref. Using the Display button, you can display slizes through
the postprocessed map and a PDF with the FSC curves and the Guinier plots for
this structure. You can also open the PostProcess/first3dref/postprocess.mrc
map in chimera, where you will see that it is much easier to see where all the
alpha-helices are then in the converged map of the 3D auto-refine procedure.
The resolution estimate is based on the phase-randomization procedure as pub-
lished previously [3]. Make sure that the FSC of the phase-randomized maps
(the red curve) is more-or-less zero at the estimated resolution of the postpro-
cessed map. If it is not, then your mask is too sharp or has too many details.
In that case use a stronger low-pass filter and/or a wider and more softer mask
in the Mask creation step above, and repeat the postprocessing.

41

8 CTF and aberration refinement

Next, we’ll use the CTF refinement job-type to estimate the asymmetrical and
symmetrical aberrations in the dataset; whether there is any anisotropic mag-
nification; and we’ll re-estimate per-particle defocus values for the entire data
set. Running this job-type can lead to further improvements in resolution at a
relatively minor computational cost, but it all depends on how flat your ice was
(for per-particle defocus estimates), and how well you had aligned your scope
(for the aberrations). It runs from a previous 3D auto-refine job as well as a cor-
responding Post-processing job. Let’s start with the higher-order aberrations,
to see whether this data suffered from beamtilt or trefoil (which are asymmetric
aberrations), or from tetrafoil or an error in spherical aberration (which are
symmetric aberrations).

8.1 Higher-order aberrations

On the I/O tab of CTF refinement job-type on the GUI the set:

• Particles (from Refine3D) Refine3D/first3dref/run data.star

• Postprocess STAR file: PostProcess/first3dref/postprocess.star

On the Fit tab set:

• Estimate (anisotropic magnification No

(We will do this later, see below.)

• Perform CTF parameter fitting? No

(We will do this later, see below.)

• Estimate beamtilt? Yes

(Despite the observation that most microscopists perform coma-free align-
ment schemes prior to data acquisition, there are still many data sets with
a significant amount of beamtilt. That’s why in this example we’re first
looking for beamtilt, and do the anisotropic magnification and the per-
particle defocus later. In general, one would try to first estimate the
source of the largest errors.)

• Also estimate trefoil? Yes

(This will allow more higher-order Zernike polynomials in the fitting of
the asymmetric aberrations.)

• estimate 4th order aberrations? Yes

(This is done mostly for illustrative purposes here. One would not expect
a big improvement at the current resolution of 3 Å.)

42

• Minimum resolution for fits (A): 30

(Just leave the default.)

This program is only implemented on the CPU. Using 1 MPI and 12 threads,
on our computer, this job finished in approximately one minute. We used the
alias aberrations.

You can analyse the accumulated averages for the asymmetrical and symmetrical
aberrations, as well as their models, by selecting the logfile.pdf file from the
Display: button on the GUI. You’ll see that this data actually suffered from
some beamtilt: one side of the asymmetrical aberration images is blue, whereas
the other side is red. You can find the values (approximately -0.2 mrad of
beamtilt in the Y-direction) in the optics table of the output STAR file:

less CtfRefine/aberrations/particles_ctf_refine.star

There was also a small error in the spherical aberration, as the symmetrical
aberration image shows a significant, circularly symmetric difference (the image
is blue at higher spatial frequencies, i.e. away from the center of the image).
Importantly, for both the asymmetric and the symmetric aberaations, the model
seems to capture the aberrations well.

If the data had suffered from trefoil, then the asymmetric aberration plot would
have shown 3-fold symmetric blue/red deviations. If the data had suffered from
tetrafoil, then the symmetric aberration plot would have shown 4-fold symmetric
blue/red deviations. Examples of those are shown in the supplement of our
2019 publication on Tau filaments from the brain of individuals with chronic
traumatic encephalopathy (CTE).

8.2 Anisotropic magnification

Next, let’s see whether these data suffer from anisotropic magnification. On
the I/O tab of CTF refinement job-type on the GUI, use the output from the
previous CTF refinement job as input to this one:

• Particles (from Refine3D) CtfRefine/aberrations/particles ctf refine.star

• Postprocess STAR file: PostProcess/first3dref/postprocess.star

And this time, on the Fit tab set:

• Estimate (anisotropic magnification Yes

(This will deactivate most of the other options, as simultaneous magnifi-
cation and aberration refinement is unstable.)

• Minimum resolution for fits (A): 30

(Just leave the default.)

43

Using 1 MPI and 12 threads, on our computer, this job finished in approximately
one minute. We used the alias magnification.

Again, the relevant images to analyse are in the logfile.pdf. There seem to be
some blue-red trends, but the actual anisotropy is very small, as assessed from
the _rlnMagMat?? elements of the (2x2) transformation matrix in the optics
table of the output STAR file:

less CtfRefine/magnification/particles_ctf_refine.star

8.3 Per-particle defocus values

Lastly, let’s re-estimate the defocus values for each particle. Again, use the
output from the previous job as input for this one (although we could have just as
well kept using the output from the aberration correction, as the magnification
anisotropy was very small):

• Particles (from Refine3D) CtfRefine/magnification/particles ctf refine.star

• Postprocess STAR file: PostProcess/first3dref/postprocess.star

And this time, on the Fit tab set:

• Estimate (anisotropic magnification No

• Perform CTF parameter fitting? Yes

• Fit defocus? Per-particle

(Provided the resolution of the reference extends well beyond 4 Å, per-
particle defocus estimation seems to be relatively stable. It will account
for non-horizontal ice layers, and particles at the top or bottom of the ice
layer.)

• Fit astigmatism? Per-micrograph

(Provided the resolution of the reference extends well beyond 4 Å, and
there are enough particles on each micrograph, estimating astigmatism
on a per-micrograph basis seems to be relatively stable. Doing this on a
pre-particle basis would require particles with very strong signal.)

• Fit B-factor? No

• Fit phase-shift? No

(This is useful for phase-plate data.)

• Estimate beamtilt? No

• estimate 4th order aberrations? No

44

• Minimum resolution for fits (A): 30

(Just leave the default.)

Using 1 MPI and 12 threads, on our computer, this job finished in six minutes.
We used the alias defocus.

Per-particle defocus values are plotted by colour for each micrograph in the
logfile.pdf. Can you spot micrographs with a tilted ice layer?

It is probably a good idea to re-run 3D auto-refine and Post-processing at this
stage, so we can confirm that the new particle STAR file actually gives bet-
ter results. We used the alias ctfrefined for both runs, and the resolution
improved (a bit): from 3.03 Å to 2.97 Å.

9 Bayesian polishing

relion also implements a Bayesian approach to per-particle, reference-based
beam-induced motion correction. This approachs aims to optimise a regularised
likelihood, which allows us to associate with each hypothetical set of particle tra-
jectories a prior likelihood that favors spatially coherent and temporally smooth
motion without imposing any hard constraints. The smoothness prior term re-
quires three parameters that describe the statistics of the observed motion. To
estimate the prior that yields the best motion tracks for this particular data
set, we can first run the program in ’training mode’. Once the estimates have
been obtained, one can then run the program again to fit tracks for the motion
of all particles in the data set and to produce adequately weighted averages of
the aligned movie frames.

9.1 Running in training mode

Using 16 threads in parallel, this job took 1 hour and 15 minutes on our com-
puter. If you do not want to wait for this, you can just proceed to section 9.2
and use the sigma-values from our precalculated results, which are already given
in that section.

If you do want to run this job yourself, on the I/O tab of the Bayesian polishing

job-type set:

• Micrographs (from MotionCorr): MotionCorr/relioncor2/corrected micrographs.star

(It is important that this Motion correction job has been run in relion-
3.0, or above. Motion correction jobs run relion-2.1 or below will NOT
work, as required metadata about the motion correction is not written
out.

45

• Particles (from Refine3D or CtfRefine): Refine3D/ctfrefined/particles ctf refine.star

(These particles will be polished)

• Postprocess STAR file PostProcess/ctfrefined/postprocess.star

(the mask and FSC curve from this job will be used in the polishing
prceodure.)

• First movie frame: 1

• Last movie frame: -1

(Some people throw away the first or last frames from their movies. Note
that this is not recommended when performing Bayesian polishing in
relion. The B-factor weighting of the movie frames will automatically
optimise the signal-to-noise ratio in the shiny particles, so it is best to
include all movie frames.)

On the Train tab set:

• Train optimal parameters? Yes

• Fraction of Fourier pixels for testing: 0.5

(Just leave the default here)

• Use this many particles: 4000

(That’s almost all we have anyway. Note that the more particles, the
more RAM this program will take. If you run out of memory, try train-
ing with fewer particles. Using much fewer than 4000 particles is not
recommended.)

On the Polish tab make sure you set:

• Perform particle polishing? No

Note that the training step of this program has not been MPI-parallelised.
Therefore, make sure you use only a single MPI process. We ran the program
with 16 threads to speed it up. Still, the calculation took more than 1 hour.
We used an alias of train.

9.2 Running in polishing mode

Once the training step is finished, the program will write out a text file called
Polish/train/opt_params.txt. To use these parameters to polish your par-
ticles, click on the job-type menu on the left to select a new Bayesian polishing

job. Keep the parameters on the I/O tab the same as before, and on the Train

tab, make sure you switch the training off. Then, on the Polish tab set:

• Perform particle polishing? Yes

46

• Optimised parameter file: Polish/train/opt params.txt

• OR use your own parameters? No

• Minimum resolution for B-factor fit (A): 20

• Maximum resolution for B-factor fit (A): -1

(just leave the defaults for these last two parameters)

Alternatively, if you decided to skip the training set, then you can fill in the
Polish tab with the sigma-parameters that we obtained in our run:

• Perform particle polishing? Yes

• Optimised parameter file:

(leave this empty to use the optimal parameters we got as per below.)

• OR use your own parameters? Yes

• Sigma for velocity (A/dose) 0.42

• Sigma for divergence (A) 1600

• Sigma for acceleration (A/dose) 2.61

• Minimum resolution for B-factor fit (A): 20

• Maximum resolution for B-factor fit (A): -1

(just leave the defaults for these last two parameters)

This part of the program is MPI-parallelised. Using 3 MPI processes, each with
16 threads, our run finished in two minutes. We used an alias of polish.

9.3 Analysing the results

The Bayesian polishing job outputs a STAR file with the polished particles called
shiny.star and a PDF logfile. The latter contains plots of the scale and B-
factors used for the radiation-damage weighting, plus plots of the refined particle
tracks for all included particles on all micrographs. Looking at the plots for this
data set, it appeared that the stage was a bit drifty: almost all particles move
from the top right to the bottom left during the movies.

After polishing, the signal-to-noise ratio in the particles has improved, and one
should submit a new 3D auto-refine job and a corrsponding Post-processing

job. We chose to run the 3D auto-refine job with the shiny particles using the
following option on the I/O tab:

• Reference mask (optional): MaskCreate/first3dref/mask.mrc

47

(this is the mask we made for the first Post-processing job. Using this
option, the solvent will be set to zero for all pixels outside the mask.
This reduces noise in the reference, and thus lead to better orientation
assignments and thus reconstructions.)

and this option on the Optmisation tab:

• Use solvent-flattened FSCs? Yes

(Using this option, the refinement will use a solvent-correction on the
gold-standard FSC curve at every iteration, very much like the one used
in the Post-processing job-type. This option is particularly useful when
the protein occupies a relatively small volume inside the particle box,
e.g. with very elongated molecules, or when one focusses refinement on a
small part using a mask. The default way of calculating FSCs in the 3D
auto-refinement is without masking the (gold-standard) half-maps, which
systematically under-estimates the resolution during refinement. This is
remediated by calculating phase-randomised solvent-corrected FSC curves
at every iteration, and this generally leads to a noticeable improvement in
resolution.)

As you can see in the pre-calculated results, we obtained a final resolution just
beyond 2.8 Å. Not bad for 3GB of data, right?

9.4 When and how to run CTF refinement and Bayesian

polishing

Both Bayesian polishing and CTF refinement , which comprises per-particle de-
focus, magnification and higher-order aberration estimation, may improve the
resolution of the reconstruction. This raises a question of which one to apply
first. In this example, we first refined the aberrations, the magnification, and
then the per-particle defocus values. We then followed up with polishing, but
we could have also performed the polishing before any of the CTF refinements.
Both approaches benefit from higher resolution models, so an iterative proce-
dure may be beneficial. For example, one could repeat the CTF refinement
after the Bayesian polishing. In general, it is probably best to tackle the biggest
problem first, and some trial and error may be necessary.

Moreover, we have seen for some cases that the training prodcedure of Bayesian
polishing yields inconsistent results: i.e. multiple runs yield very different sigma
values. However, we have also observed that often the actual sigma values used
for the polishing do not matter much for the resolution of the map after re-
refining the shiny particles. Therefore, and also because the training is compu-
tationally expensive, it may be just as well to run the polishing directly with
the default parameters (σvel = 0.2;σdiv = 5000;σacc = 2), i.e. without training
for your specific data set.

48

10 Local-resolution estimation

The estimated resolution from the post-processing program is a global estimate.
However, a single number cannot describe the variations in resolution that are
often observed in reconstructions of macromolecular complexes. Alp Kucukelbir
and Hemant Tagare wrote a nifty program to estimate the variation in resolution
throughout the map [8]. relion implements a wrapper to this program through
the Local resolution job-type. Alternatively, one can choose to run a post-
processing-like procedure with a soft spherical mask that is moved around the
entire map. In the example below, we use the latter.

10.1 Running the job

On the I/O tab set:

• One of the two unfiltered half-maps:

Refine3D/shiny/run half1 class001 unfil.mrc

• User-provided solvent mask: MaskCreate/first3dref/mask.mrc

• Calibrated pixel size: 1.244

(Sometimes you find out when you start building a model that what you
thought was the correct pixel size, in fact was off by several percent. Inside
relion, everything up until this point was still consistent. so you do not
need to re-refine your map and/or re-classify your data. All you need to
do is provide the correct pixel size here for your correct map and final
resolution estimation.)

On the ResMap tab set Use ResMap? to No; on the Relion tab set:

• Use Relion? Yes

• User-provided B-factor: -30

(This value will be used to also calculate a locally-filtered and sharpened
map. Probably you want to use a value close to the one determined
automatically during the Post-processing job.)

• MTF of the detector (STAR file):

(The same as for the Post-processing job.)

10.2 Analysing the results

We used shiny as an alias. Running with 8 MPI processes, this job took approxi-
mately 7 minutes. The output is a file called LocalRes/polished/relion_locres.mrc
that may be used in UCSF chimera to color the Postprocess/polished/postprocess.mrc

49

map according to local resolution. This is done using Tools -> Volume data ->

Surface color, and then select by volume data value and browse to the
resmap file.

Unique to the relion option is the additional output of a locally-filtered (and
sharpened map), which may be useful to describe the overall variations in map
quality in a single map. This map is saved as LocalRes/polished/relion_locres_filtered.mrc
and can be visualised directly in UCSF chimera (and optionally also coloured
by local resolution as before).

11 Checking the handedness

Careful inspection of the map may indicate that the handedness is incorrect,
e.g. because the α-helices turn the wrong way around. Remember that it is
impossible to determine absolute handedness from a data set without tilting the
microscopy stage. The SGD algorithm in the 3D initial model jobtype therefore
has a 50% chance of being in the opposite hand. In our precalculated results,
this was not the case. One may flip the handedness of the postprocessed map
as follows:

relion_image_handler --i PostProcess/polished/postprocess.mrc \

--o PostProcess/polished/postprocess_invert.mrc --invert_hand

The same command could also be run on any of the other maps. If one realises
earlier on in the image processing procedure that the hand is wrong, one could
of course also switch to the other hand earlier on. For relion itself it doesn’t
matter, as both hands cannot be distinguished, but it may be more convenient
to flip the hand as soon as you notice it.

Once in the correct hand, you might want to load the map into UCSF chimera

and superimpose it with an atomic model for β-galactosidase. You could try
fetching one straight from the PDB using PDB-ID 5a1a.

12 Wrapping up

12.1 Making a flowchart

Do you wonder how you got to your final reconstruction? Select the last job

you performed from the Finished jobs list and try the Make flowchart option

from the Job actions button. You’ll need LATEX and the TikZ package on your
system in order for this to work. On the first page will be an overview flowchart
without the exact job names, which may be useful for publication purposes
(perhaps after editing it in your favourite vector-based design program). After
the overview flowchart, the first detailed flowchart shows you the path how you

50

got to this end. Note that flowcharts longer than 10 steps will be cut into pieces.
There may be branches in your work flow. Therefore, following the flowchart
of your last job, there will also be flowcharts for each branch. You can click on
the links to get to the corresponding position in the PDF file.

12.2 Cleaning up your directories

In order to save disk space, relion has an option to clean up job directories.
There are two modes of cleaning: ’gentle’ cleaning will only delete interme-
diate files from the job directory being cleaned; ’harsh’ cleaning also deletes
files that may be necessary to launch a new job that needs input from the job
being cleaned. For example, harsh cleaning will remove averaged micrographs
from a MotionCorr job, or extracted particles stacks from a Particle extraction

job, while gentle cleaning will remove all files from itermediate iterations of
2D classification , 3D classification or 3D auto-refine jobs. You can clean indi-
vidual jobs from the Job actions button; or you can clean all jobs from the ’Jobs’
pull-down menu at the top of the GUI. We used the ’Gently clean all jobs’ op-
tion from that menu before making a tarball of the project directory that we
distributed as our precalculated results. You might want to gently clean your
project directory before you put your data in long-term storage.

12.3 Asking questions and citing us

That’s it! Hopefully you enjoyed this tutorial and found it useful. If you have
any questions about relion, please first check the FAQ on the relion Wiki and
the CCPEM mailing list. If that doesn’t help, use the CCPEM list for asking
your question. Please, please, please, do not send a direct email to Sjors, as he
can no longer respond to all of those.

If relion turns out to be useful in your research, please do cite our papers and
tell your colleagues about it.

12.4 Further reading

The theory behind the refinement procedure in relion is described in detail
in:

• S.H.W. Scheres (2012) ”relion: Implementation of a Bayesian approach to
cryo-EM structure determination” J. Struc. Biol., 180, 519-530.

• S.H.W. Scheres (2012) ”A Bayesian view on cryo-EM structure determination”
J. Mol. Biol., 415, 406-418.

A comprehensive overview of how to use relion for all types of classifications
is described in:

51

http://www2.mrc-lmb.cam.ac.uk/groups/scheres/publications.html

• S.H.W. Scheres (2016) ”Processing of structurally heterogeneous cryo-EM data
in relion” Meth. Enzym., 579, 125-157.

This tutorial does not cover multi-body refinement, which is useful to describe
continuous motions in relatively large complexes. You can find a manuscript
with specific instructions on how to perform multi-body refinement on the
RELION Wiki.

52

ftp://ftp.mrc-lmb.cam.ac.uk/pub/scheres/multibody_protocol.pdf

13 Appendix A: notes on installation

13.1 Install MPI

Note that you’ll need a computing cluster (or a multi-core desktop machine
with nvidia GPUs) with an MPI (message passing interface) installation. To
compile relion, you’ll need a mpi-devel package. The exact flavour (openMPI,
MPICH, LAM-MPI, etc) or version will probably not matter much. If you don’t
have an mpi-devel installation already on your system, we recommend installing
openMPI.

13.2 Install CUDA

If you have a relatively modern GPU from nvidia (with compute capability
3.5+), then you can accelerate your autopicking, classification and refinement
jobs considerably. In order to compile relion with GPU-acceleration support,
you’ll need to install cuda. We used cuda-8.0 to prepare this tutorial. Down-
load it from nvidia’s website.

13.3 Install RELION

relion is open-source software. Download it for free from the relion wiki,
and follow the installation instructions. If you’re not familiar with your job
submission system (e.g. Sun Grid Engine, PBS/TORQUE, etc), then ask your
system administrator for help in setting up the qsub.csh script as explained
in the installation instructions. Note that you will probably want to run so-
called hybridly-parallel jobs, i.e. calculations that use both MPI for distributed-
memory parallelization AND pthreads for shared-memory parallelization. Your
job submission queueing system may require some tweaking to allow this. Again,
ask your sysadmin for assistance.

13.4 Install motion-correction software

relion-3.0 provides a wrapper to the UCSF program motioncor2, which is
used for whole-frame micrograph movie-alignment [20]. Download the program
from David Agard’s page and follow his installation instructions. Alternatively,
you may also use RELION’s own (CPU-only) implementation of motioncor2,
so don’t worry if you have trouble installing the UCSF implementation. Note
that, as of version 3.0, the wrapper to unblur [5] from Niko grigorieff’s group
has been discontinued from the GUI.

53

http://www.open-mpi.org/
https://developer.nvidia.com/cuda-downloads
http://www2.mrc-lmb.cam.ac.uk/relion/index.php/Download_%26_install
http://msg.ucsf.edu/em/software/motioncor2.html

13.5 Install CTF-estimation software

CTF estimation is not part of relion. Instead, relion provides a wrapper to
Alexis Rohou and Niko Grigorieff’s ctffind4 [10]. Please download this from
Niko’s ctffind website and follow his installation instructions. Alternatively,
if you have nvidia graphics cards (GPUs) in your machine, you may also use Kai
Zhang’s gctf [19], which may be downloaded from Kai’s website at LMB.

13.6 Install RESMAP

Local-resolution estimation may be performed inside relion’s own postpro-
cessing program, or through a wrapper to Alp Kucukelbir’s resmap [8]. Please
download it from Alp’s resmap website and follow his installation instructions.

54

http://grigoriefflab.janelia.org/ctf
http://www.mrc-lmb.cam.ac.uk/kzhang/
http://resmap.sourceforge.net/

14 Appendix B: using RELION

14.1 The GUI

14.1.1 A pipeline approach

The GUI serves a central role in it’s pipelined approach, details of which have
been published in the 2016 Proceedings of the CCP-EM Spring Symposium [4].
We recommend to create a single directory per project, i.e. per structure you
want to determine. We call this the project directory. It is important to al-
ways launch the relion graphical user-interface (GUI), by typing the command
relion, from the project directory.

The GUI keeps track of all jobs and how output from one job is used as input
for another, thereby forming a workflow or pipeline. Each type of job has its
own output directory, e.g. Class2D/, and inside these job-type directories, new
jobs get consecutive numbers, e.g. Class2D/job010. Inside these individual job
directories, output names are fixed, e.g. Class2D/job010/run. To provide a
mechanism to have more meaningful names for jobs, a system of job “aliases”
is used, which are implemented as symbolic links to the individual job direc-
tories on the filesystem. All info about the pipeline is stored in a file called
default_pipeline.star, but in normal circumstances the user does not need
to look into this file. In case this file gets corrupted, one can copy back a backup
of this file from the last executed job directory.

14.1.2 The upper half: jobtype-browser and parameter-panel

On the left of the upper half of the GUI is the jobtype-browser: a vertical list
of jobtypes, e.g. 2D classification . On the right is a panel with multiple tabs,
where parameters to the different types of jobs may be input. On the top left
of the GUI are three different menu’s, providing a range of functionalities. The
Schedule and Run! buttons can be used to schedule jobs for future execution,
or to execute them now. The former is particularly useful in preparing fully
automated “pipelines” that can be run iteratively, for example in real-time as
data is being collected. See section ?? for more details. By clicking in the
jobtype-browser on the left-hand side of the GUI, a new job (with a Run!

button) will be loaded in the parameter-panel on the right.

14.1.3 The lower half: job-lists and stdout/stderr windows

The lower half of the GUI contains lists of jobs that are still running (Running jobs),

have already finished (Finished jobs), or are scheduled for later execution

(Scheduled jobs). By clicking jobs in these lists, the parameters of that job will

55

https://doi.org/10.1107/S2059798316019276

be loaded in the parameter-panel, and the Run! button will change color and
turn into continue now! . Upon clicking the latter, no new output job-directory
will be made, but the job will be continued according to the parameters given
in the parameter-panel. 2D classification , 3D classifications and 3D auto-refine

jobs will need a _optimiser.star file to continue from, and will have file-
names with the iteration from which they were continued, e.g. run_ct23. Other
types of jobs may continue from the point until they were executed before, e.g.
Motion correction , CTF estimation , Auto-picking and Particle Extraction will
continue by running only on those micrographs that weren’t done before. The

Input to this job and Output from this job lists link jobs together and can be

used to browse backwards or forwards in the project history.

At the bottom of the lower half of the GUI, the standard output (stdout) and
standard error (stderr) of the selected (finished or running) job will show in black
and red text, respectively. The stderr should ideally be empty, any text here is
usually worth inspection. These text displays get updated every time you click
on a job in the job-lists. Double-clicking on the stdout or stderr displays will
open a pop-up window with the entire text for more convenient scrolling.

14.1.4 The Display button

The Display: button below the run and schedule buttons serves to visualise the
most important input and output files for each job. When a job from the job-
lists in the lower half of the GUI is selected, clicking this button will pop-up
a menu with all the input and output of this job that can be displayed (for
example, particles, micrographs, coordinates, PDF files, etc). A more general
functionality to display any (e.g. intermediate) file can be accessed through the
Display option of the File menu on the top left of the GUI.

14.1.5 The Job actions button

The Job actions button opens up a little menu with options for the selected
(running, finished or scheduled) job. Here, you can access a file called note.txt

(that is saved in every individual job directory and which may be used to store
user comments); you can change the alias of the job; you can mark a job as
finished (in case it somehow got stuck); you can make a flowchart of the history
of that job (provided LATEX and the TikZ package are installed on your system,
also see section 12); or you can delete or clean a job to save disk space (see
below).

14.1.6 Clean-up to save disk space

Deletion of jobs moves the entire job directory from the project directory into
a directory called Trash/. You can empty the Trash folder from File menu on

56

the top left of the GUI to really free up the space. Until you do so, you can still
“undelete” jobs using the corresponding option from the Jobs menu on the top
left.

To save disk space, you can also “clean” jobs, which will move intermediate files
to the Trash folder, e.g. the files written out for all intermediate iterations of
refine jobs. There are two cleaning options: gentle clean will leave all files
intact that could be used as input into another job, while harsh clean may also
remove those. Evidently, “harsh” cleaning can free up more space, in particular
directories with particle stacks or micrographs may become large, e.g. from
Motion correction , Particle extraction , Movie refinement and Particle polishing

job types. One can also clean all directories in the project with a single click
using the corresponding options from the Jobs menu on the top left of the GUI.
You can protect specific directories from “harsh” cleaning by placing a file called
NO_HARSH_CLEAN inside them, e.g. you may want to protect your final set of
polished particles from deletion by executing:

touch Polish/job098/NO_HARSH_CLEAN

14.2 Optimise computations for your setup

14.2.1 GPU-acceleration

Dari Kimanius and Bjoern Forsberg from the group of Erik Lindahl (Stockholm)
have ported the most computationally expensive parts of relion for the use
of GPUs. Because they used the cuda-libraries from nvidia to do this, GPU-
acceleration in relion only works with nvidia cards. These need to be of
compute capability 3.5 or higher. Both single and double precision cards will
work, so one is not restricted to the expensive double-precision cards, but can
use the cheaper gaming cards as well. Details of their implementation can be
found in their eLife paper[7].

Two different relion programs have been GPU-accelerated: relion_autopick

(for Auto-picking) and relion_refine (for 2D classification , 3D classification

and 3D auto-refine jobs). Both the sequential and the MPI-versions of these
programs have been accelerated.

14.2.2 Disk access

With the much improved speed of image processing provided by the GPU-
acceleration, access to the hard disk increasingly becomes a bottle neck. Several
options are available on the relion GUI to optimise disk access for your data set
and computer setup. For 2D classification , 3D initial model , 3D classification

and 3D auto-refine one can choose to use parallel disc I/O. When set to
Yes, all MPI processes will read particles simultaneously from the hard disk.

57

https://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications
https://elifesciences.org/articles/18722

Otherwise, only the master will read images and send them through the network
to the slaves. Parallel file systems like gluster of fhgfs are good at parallel disc
I/O. NFS may break with many slaves reading in parallel.

One can also set the number of pooled particles. Particles are processed in
individual batches by MPI slaves. During each batch, a stack of particle images
is only opened and closed once to improve disk access times. All particle images
of a single batch are read into memory together. The size of these batches is at
least one particle per thread used. This parameter controls how many particles
are read together in a batch by each thread. If it is set to 3 and one uses 8
threads, batches of 3x8=24 particles will be read together. This may improve
performance on systems where disk access, and particularly metadata handling
of disk access, is a problem. It has a modest cost of increased RAM usage.

If one has a relatively small data set (and/or a computer with a lot of RAM),
then one can pre-read all particles into RAM at the beginning of a cal-
culation. This will greatly speed up calculations on systems with relatively
slow disk access. However, one should of course be careful with the amount
of RAM available. Because particles are read in float-precision, it will take
N×boxsize×boxsize×4

1024×1024×1024
Giga-bytes to read N particles into RAM. For 100,000 par-

ticles with a 200-pixel boxsize that becomes 15Gb, or 60 Gb for the same number
of particles in a 400-pixel boxsize.

If the data set is too large to pre-read into RAM, but each computing node has a
local, fast disk (e.g. a solid-state drive) mounted with the same name, then one
can let each MPI slave copy all particles onto the local disk prior to starting the
calculations. This is done using the Copy particles to scratch directory.
If multiple slaves will be executed on the same node, only the first slave will
copy the particles. If the local disk is too small to hold the entire data set, those
particles that no loner fit on the scratch disk will be read from their original
position. A sub-directory called relion_volatile will be created inside the
specified directory name. For example, if one specifies /ssd, then a directory
called /ssd/relion_volatile will be created. If the /ssd/relion_volatile

directory already exists, it will be wiped before copying the particles. Then,
the program will copy all input particles into a single large stack inside this
directory. If the job finishes correctly, the /ssd/relion_volatile directory will
be deleted again. If the job crashes before finishing, you may want to remove
it yourself. The program will create the /ssd/relion_volatile directory with
writing permissions for everyone. Thereby, one can choose to use /ssd, i.e.
without a username, as a scratch directory. That way, provided always only a
single job is executed by a single user on each computing node, the local disks
do not run the risk of filling up with junk when jobs crash and users forget to
clean the scratch disk themselves.

Finally, there is an option to combine iterations through disc. If set to
Yes, at the end of every iteration all MPI slaves will write out a large file with
their accumulated results. The MPI master will read in all these files, combine
them all, and write out a new file with the combined results. All MPI salves

58

will then read in the combined results. This reduces heavy load on the network,
but increases load on the disc I/O. This will affect the time it takes between
the progress-bar in the expectation step reaching its end (the mouse gets to the
cheese) and the start of the ensuing maximisation step. It will depend on your
system setup which is most efficient. This option was originally implemented to
circumvent bugs on the network cards on our old cluster at LMB. Nowadays,
we prefer not to use this option, as it tends to be very slow when refinements
reached high resolutions.

14.3 Interaction with other programs

Although, in principle, relion can use particles that have been extracted by a
different program, this is NOT the recommended procedure. Many programs
change the particles themselves, e.g. through phase flipping, band-pass or
Wiener filtering, masking etc. All these are sub-optimal for subsequent use
in relion. Moreover, gathering all the required metadata into a correctly for-
matted relion-type star file may be prone to errors. Because re-extracting
your particles in relion is straightforward and very fast, the procedure outlined
below is often a much easier (and better) route into relion.

Also, several implementations of wrappers around relion have now been re-
ported (e.g. in eman2, scipion and appion). Although we try to be helpful
when others write these wrappers, we have absolutely no control over them and
do not know whether their final product uses relion in the best way. There-
fore, in case of any doubt regarding results obtained with these wrappers, we
would recommend following the procedures outlined in this tutorial. The rec-
ommended way of executing external programs from within the relion pipeline
itself is outlined in the next section.

14.4 The External job-type

14.4.1 User interaction through the GUI

The External job-type on the relion-3.1 GUI provides a way to execute any
third-party program from within the relion pipeline. The interaction with the
user is as follows:

On the Input tab set:

• External executable: myscript.py

(This is the filename of an executable script, which will call the external
program.)

• Input movies:

• Input micrographs:

59

• Input particles:

• Input coordinates:

• Input 3D reference:

• Input 3D mask:

The user provides at least one of the input entries to tell relion from which
other jobs the input nodes come from, and what type of input this is. This will
therefore allow to maintain an intact directional graph inside the pipeliner. On
the Params tab, the user can then provide up to ten (optional) free parameters
that will be passed onto the executable script. Finally, the Running tab allows
multi-threaded execution, queue submission, and any other arguments to be
passed through the Additional arguments entry.

The GUI will then create and execute the following command, either locally or
through a queueing system:

myscript.py --o External/jobXXX/ --in_YYY ZZZ --LABELN VALUEN --j J

where

• XXX is the current jobnumber in the pipeline.

• YYY is the type of the input node: movies, mics, parts, coords, 3dref,
or mask,

• ZZZ is the name of the corresponding input node. Note that more than
one input node may be given, each with its own --in_YYY argument.

• LABELN is the label of a free parameter, as defined on the Params tab of
the GUI. Note that up to ten different labels may be used.

• VALUEN is the corresponding value of the free parameter. This is optional:
not every label needs a value.

• J is the number of threads defined on the running tab.

14.4.2 Functionality of the executable script

It is the responsibility of the executable script (myscript.py) to handle the
command line parsing of the generated command. In addition, there are a few
rules the script needs to adhere to:

• All output needs to be written out in the output directory, as specified
by the --o External/jobXXX/ option. In addition, for jobs that emu-
late relion job-types like Motion correction or Auto-picking , the output
should be organised in the same directory structure as the corresponding
relion job-type would make.

60

• When completed, the script should create an empty file called RELION_JOB_EXIT_SUCCESS
in the output directory. This will tell the pipeliner that the task has fin-
ished successfully. Aborted or failed runs may optionally be communicated
by creating files called RELION_JOB_EXIT_ABORTED and RELION_JOB_EXIT_FAILURE.

• The job should output file called RELION_OUTPUT_NODES.star, which should
have a table called data_output_nodes. This table should have two
columns with the names and types of all the output nodes of the job, using
the _rlnPipeLineNodeName and _rlnPipeLineNodeTypemetadata labels.
See the data_pipeline_nodes table in the default_pipeline.star file
of any relion project directory for examples. Output nodes defined here
will lead to the creation of edges between jobs in the directional graph of
the pipeliner; and output nodes will be available for convenient displaying
by the user using the Display: button on the GUI.

• The following may not be necessary or relevant, but the GUI has a Job actions

button, which allows users to abort running jobs. This button will create a
file called RELION_JOB_ABORT_NOW in the output directory. If this function-
ality is to be used, the script should abort the job when this file is present,
create the RELION_JOB_EXIT_ABORTED file, remove the RELION_JOB_ABORT_NOW
file, and then exit.

14.4.3 Example: a particle-picker

If your external program is a particle picker, e.g. topaz [1] (and see here
arxiv.pdf for the preprint), then you would give on the Input tab:

• External executable: run topaz.py

• Input micrographs: CtfFind/job005/micrographs ctf.star

(This file would be visible through the Browse button next to the input
entry, which would only show star files of micrographs that exist in the
current project.)

On the Params tab, one would provide any necessary arguments to be picked
up by the script, for example:

• Param1 label, value: threshold 0.1

• Param2 label, value: denoise first

Upon pressing the Run! button, this would execute the following command:

run_topaz.py --o External/job006/ --in_mics CtfFind/job005/micrographs_ctf.star \\

--threshold 0.1 --denoise_first --j 1

The executable run_topaz.py is then responsible for correctly passing the com-
mand line arguments to topaz, and to make sure the rules in the previous section
are adhered to. For picking jobs, the directory structure of the input movies

61

https://arxiv.org/pdf/1803.08207.pdf

(or micrographs) should be maintained inside the output directory, and each
micrograph would have a STAR file with the picked coordinates that has the
same rootname as the original micrograph, but with a _PICKNAME.star suffix.
The PICKNAME is a free string. One could use the name of the particle-picking
program, for example topaz. Therefore, if a movie was originally imported
as Movies/mic001.tif, its corresponding STAR file with the picked coordi-
nate would be placed in External/job006/Movies/mic001_topaz.star. In
addition, in the output directory, the script should create a text file called
coords_suffix_PICKNAME.star (i.e. coords_suffix_topaz.star). This file
should contain at least one line of text, which is the name of the input micro-
graphs STAR file given on the Input tab, i.e. CtfFind/job005/micrographs_ctf.star.
The output node (the coords_suffix_topaz.star file) should also be listed
in the RELION_OUTPUT_NODES.star file. This file would therefore look like
this:

data_output_nodes

loop_

_rlnPipeLineNodeName #1

_rlnPipeLineNodeType #2

External/job006/coords_suffix_topaz.star 2

14.5 On-the-fly processing: Schedules

Schedules are a new feature introduced to relion-3.1. Schedules aim to provide
a generalised replacement for the relion_it.py script for on-the-fly processing
introduced to relion-3.0. Although all the functionality to write python scripts
is maintained in relion-3.1, we no longer maintain and distribute the script
itself for every relion release. The reason for this is that for each new release
some input/output options on the GUI will have changed, requiring a rewrite
of (parts of) the python script. Instead, the Schedules framework in relion-3.1
aims to formalise the decision process that was encoded in the python code of the
relion_it.py script. The Schedules framework is built around the following
key concepts: a directed graph that represents the logic of a series of subsequent
relion job-types is encoded in Nodes and Edges. Nodes can be either a relion

job or a so-called Operator ; Edges form the connections between Nodes. In
addition, Schedules have their own Variables.

All information for each Schedule is stored in its own subdirectory of the Schedules/
directory in a relion project, e.g. Schedules/preprocess. Within each Sched-
ule’s directory, the schedule.star file contains information about all the Vari-
ables, Edges, Operators and Jobs. In addition, within the Schedule’s directory,
a schedule_pipeline.star file contains information which jobs provide input
for other jobs, and each job has a unique subdirectory (named according to its
JobNameOriginal, see below) that contains a job.star file with the parameters
for that job.

62

14.5.1 Variables

Three different types of Variables exist: floatVariables are numbers; boolean-
Variables are either True or False; and stringVariables are text. Each Vari-
able has a VariableName; a so-called VariableResetValue, at which the value
is initialised; and a VariableValue, which may change during execution of the
Schedule through the actions of Operators, as outlined below.

One special stringVariable is called email. When this is set, upon completion
or upon encountering an error, the Schedule will send an email (through the
Linux mail command) to the value of the email stringVariable.

14.5.2 Jobs

Jobs are the first type of Node. They can be of any of the jobtypes defined
in the relion pipeliner, i.e. Import , Motion correction , etc, including the new

External . Any Variable defined in the Schedule can be set as a parameter
in a Job, by using two dollar signs on the GUI or in the job.star file. For
example, one could define a floatVariable voltage and use $$voltage on the
correspondig input line of an Import job. Upon execution of the job inside the
Schedule, the $$voltage will be replaced with the current value of the voltage
floatVariable.

Jobs within a Schedule each have a JobName and a JobNameOriginal. The
latter is defined upon creation of the job (see next section); the former depends
on the execution status of the Schedule, and will be set to the executed relion

job’s name, e.g. CtfFind/job004. In addition, each job has a JobMode and a
jobHasStarted status. There are three types of JobMode:

• new: regardless of jobHasStarted, a new job will be created, with its own
new JobName, every time the Scheduler passes through this Node.

• continue: if jobHasStarted is False, a new job, with its own new JobName,
will be created. If jobHasStarted is True, the job will be executed as a
continue job inside the existing JobName directory.

• overwrite: if jobHasStarted is False, a new job, with its own new Job-
Name, will be created. If jobHasStarted is True, a new job execution will
overwrite what was already present inside the existing JobName directory.

When a Schedule executes a Job, it always sets jobHasStarted to True. When
a Schedule is reset, the jobHasStarted status for all jobs is set to False.

14.5.3 Operators

Operators are the second type of Node. Each operator within a Schedule has a
unique name and a type. Operators can also have an output Variable: output,

63

on which they act, and up to two input Variables: input1 and input2. Most,
but not all operators change the value of their outputVariable.

The following types of operators exist to act on a floatVariable:

• float=set: output = floatVariable input1

• float=plus: output = floatVariable input1 + floatVariable input2

• float=minus: output = floatVariable input1 − floatVariable input2

• float=mult: output = floatVariable input1 ∗ floatVariable input2

• float=divide: output = floatVariable input1 / floatVariable input2

• float=round: output = ROUND(floatVariable input1)

• float=count images: sets output to the number of images in the STAR
file called stringVariable input1. stringVariable input2 can be particles,
micrographs or movies.

• float=count words: sets output to the number of words in stringVari-
able input1, where individual words need to be separated with a , (comma)
sign.

• float=read star: reads output from a double or integer that is stored
inside a STAR file. stringVariable input1 defines which variable to read
as: starfilename,tablename,metadatalabel. If tablename is a table instead
of a list, then floatVariable input2 defines the line number, with the default
of zero being the first line.

• float=star table max: sets output to the maximum value of a column
in a starfile table, where stringVariable input1 specifies the column as
starfilename,tablename,metadatalabel.

• float=star table min: sets output to the minimum value of a column
in a starfile table, where stringVariable input1 specifies the column as
starfilename,tablename,metadatalabel.

• float=star table avg: sets output to the average value of a column in a
starfile table, where stringVariable input1 specifies the column as starfile-
name,tablename,metadatalabel.

• float=star table sort idx: a sorting will be performed on the values of a
column in a starfile table, where stringVariable input1 specifies the column
as starfilename,tablename,metadatalabel. StringVariable input2 specifies
the index in the ordered array: the lowest number is 1, the second lowest
is 2, the highest is -1 and the one-but-highest is -2. Then, output is set to
the corresponding index in the original table.

The following types of operators exist to act on a booleanVariable:

• bool=and: output = booleanVariable input1 AND booleanVariable in-
put2

64

• bool=or: output = booleanVariable input1 OR booleanVariable input2

• bool=not: output = NOT booleanVariable input1

• bool=gt: output = floatVariable input1 > floatVariable input2

• bool=lt: output = floatVariable input1 < floatVariable input2

• bool=ge: output = floatVariable input1 >= floatVariable input2

• bool=le: output = floatVariable input1 <= floatVariable input2

• bool=eq: output = floatVariable input1 == floatVariable input2

• bool=file exists: output = True if stringVariable input1 exists on the
file system; False otherwise

• bool=read star: reads output from a boolean that is stored inside a
STAR file. stringVariable input1 defines which variable to read as: starfile-
name,tablename,metadatalabel. If tablename is a table instead of a list,
then floatVariable input2 defines the line number, with the default of zero
being the first line.

The following types of operators exist to act on a stringVariable:

• string=join: output = concatenate stringVariable input1 and stringVari-
able input2

• string=before first: sets output to the substring of stringVariable in-
put1 that occurs before the first instance of substring stringVariable in-
put2.

• string=after first: sets output to the substring of stringVariable input1
that occurs after the first instance of substring stringVariable input2.

• string=before last: sets output to the substring of stringVariable input1
that occurs before the last instance of substring stringVariable input2.

• string=after last: sets output to the substring of stringVariable input1
that occurs after the last instance of substring stringVariable input2.

• string=read star: reads output from a string that is stored inside a
STAR file. stringVariable input1 defines which variable to read as: starfile-
name,tablename,metadatalabel. If tablename is a table instead of a list,
then floatVariable input2 defines the line number, with the default of zero
being the first line.

• string=glob: output = GLOB(stringVariable input1), where input1 con-
tains a Linux wildcard and GLOB is the Linux function that returns all
the files that exist for that wildcard. Each existing file will be separated
by a comma in the output string.

• string=nth word: output = the Nth substring in stringVariable input1,
where N=floatVariable input2, and substrings are separated by commas.

65

Counting starts at one, and negative values for input2 mean counting from
the end, e.g. input2=-2 means the second-last word.

The following types of operators do not act on any variable:

• touch file: performs “touch stringVariable input1” on the file system

• copy file: performs “cp stringVariable input1 stringVariable input2” on
the file system. Input1 may contain a linux wildcard. If input2 contains
a directory structure that does not exist yet, it will be created.

• move file: performs “mv stringVariable input1 stringVariable input2” on
the file system. Input1 may contain a linux wildcard. If input2 contains
a directory structure that does not exist yet, it will be created.

• delete file: performs “rm -f stringVariable input1” on the file system.
Input1 may contain a linux wildcard.

• email: sends an email, provided a stringVariable with the name email

exists and the Linux command mail is functional. The content of the
email has the current value of Input1, and optionally also Input2.

• wait: waits floatVariable input1 seconds since the last time this opera-
tor was executed. The first time it is executed, this operator only starts
the counter and does not wait. Optionally, if output is defined as a float-
Variable, then the elapsed number of seconds since last time is stored in
output.

• exit: terminates the execution of the Schedule, and sends a confirmation
email if the email stringVariable is defined.

14.5.4 Edges

Two types of Edges exist. The first type is a normal Edge, which connects an
inputNode to an ouputNode, thereby defining their consecutive execution. The
second type is called a Fork. A Fork has one inputNode and two outputNodes.
Whether one or the other output Node is executed depends on the current value
of the booleanVariable that is associated with the Fork. Thereby, Forks are the
main instrument of making decisions in Schedules.

14.5.5 Creating a new Schedule

The combination of the Variables, Nodes and Edges allows one to create com-
plicated sequences of jobs. It is probably a good idea to draw out a logical
flow-chart of your sequence before creating a Schedule as outlined below.

The creation of a Schedule is most easily done through the GUI, using the
following command:

66

relion --schedule preprocess &

Note that the --schedule argument launches the GUI in a modifed mode,
where slider bars and Yes/No pull-down menus are replaced by plain input text
fields for more convenient placement of Variables with a $$ prefix.

Variables can be added or deleted using the corresponding Set and Del but-
tons, respectively. The left-hand input field defines the VariableName, the right-
hand input field defines its VariableValue and VariableResetValue. Any vari-
able names that contain a JobNameOriginal of any of the Jobs inside the same
Schedule, will be replaced by the current JobName upon execution of an oper-
ator.

Similarly, Operators can be added or deleted using the corresponding Add and
Del buttons, respectively. The upper-left pull-down menu contains all possible
OperatorTypes. The upper-right pull-down menu (next to the -> sign) will define
the Output variable, and the menu contains a list of all defined Variables. The
lower two pull-down menus (with labels i1: and i2:) define Input1 and Input2
variables. AddingOperators with types for the input or output variables that are
incompatible with theOperatorType will result in a pop-up error message.

Jobs can be added by first clicking on the job-type menu on the left-hand side
of the top half of the GUI; then filling in the parameters on all tabs. Note
that parameters may be updated with the current values of Variables from
the Schedule by using the $$ prefix, followed by the name of the corresponding
Variable, as also mentioned above. If one Job depends on another Job inside the
same Schedule, it is important to use the Browse button for its input parameters
on the I/O tab of the job, and to select the input files from the same Schedules
subdirectory. This is because, much like with Variables, all parameters of Jobs
that contain a JobNameOriginal of any of the Jobs inside the same Schedule,
will be replaced by the current JobName upon execution of that Job. This way,
the Schedule will be able to define the correct dependencies between the newly
created jobs upon its execution. Once all tabs on the top part of the GUI have
been filled in, one needs to provide a JobNameOriginal in the input field with
the label Name:. In addition, the JobMode needs to be chosen from the pull-
down menu: new, continue or overwrite. Then, the job can be added to the
Schedule by clicking the Add job button.

Finally, once all the Variables, Operators and Jobs are in place, one may add or
delete the Edges using the corresponding Add and Del buttons, respectively.
All defined Operators and Jobs will be available from the pull-down menus below
these buttons. Normal Edges go from the left-hand pull-down to the right-hand
pull-down menu, with the -> sign in between them. Forks are defined by also
selecting a booleanVariable from the pull-down menu with the if: label. When
the booleanVariable is True, it will point to the Node defined by the lower-right
pull-down menu (with the : label). When the booleanVariable is False, it will
point to the Node defined by the upper-right pull-down menu (with the ->

label). The Schedule will be initialised (and reset) to the left-hand Node of the

67

first defined Edge. If the Schedule is not an infinite loop, it is recommended to
add the exit Operator as the last Node.

To check the logic of the defined Schedule one can use the Set , Prev , Next and
Reset buttons at the bottom of the GUI to set the CurrentNodeName to any
of the defined Nodes ; to go to the previous Node; to go to the next Node; or to
reset all Variables and set CurrentNodeName to the left-hand side Node of the
first Edge.

Also, using the ’Scheduling’ menu on the top of the GUI, one can make a copy
of any Schedule using the ’Copy Schedule’ option. This may be useful to make a
back-up of a schedule during the different stages of its creation. Once a Schedule
has been created, it may be useful for more than one relion project. Therefore,
you may want to store it in a tar-ball:

tar -zcvf preprocess_schedule.tar.gz Schedules/preprocess

That tar-ball can then be extracted in any new relion project directory:

tar -zxvf preprocess_schedule.tar.gz

14.5.6 Executing a Schedule

Once a Schedule has been created using the --schedule argument to the GUI,
it is no longer necessary to provide that argument. One can instead launch the
GUI normally (and have slider bars for numbers and Yes/No pull-down menues
for booleans):

relion &

The Schedule can then be accessed through the ’Scheduling’ menu at the top
of the GUI, where all defined Schedules are available through the ’Schedules’
sub-menu. The same GUI can be toggled back into the normal ’pipeline’ mode
from the same menu (or by pressing ALT+’p’). If one wants to start a Schedule
from scratch, one would typically press the Reset button first, and then press
the Run! button. This will lock the Schedule directory from further writing
by the GUI and to reflect this, the lower part of the GUI will be de-activated.
Once the Schedule finishes, the lock (in effect a hidden directory with the name
.relion_lock_schedule_NAME) will be removed and the bottom part of the
GUI will be re-activated. One can safely toggle between the pipeliner and
the scheduler mode during execution of any Schedule, and multiple (different)
Schedules can run simultaneously.

When a Schedule for whatever reason dies, the lock will not be automatically
removed. If this happens, use the Unlock button to remove the lock manually.
Be careful not to remove the lock on a running Schedule though, as this itself
will cause it to die with an error.

68

If one would like to stop a running Schedule for whatever reason, one can press
the Abort button. This will send an abort signal (i.e. it will create files called
RELION_JOB_ABORT_NOW in the job directory of the currently running job, and in
the directory of the Schedule itself), which will cause the Schedule to stop, and
the lock to be removed. If one were to press the Run! button again, the same
Schedule would continue the same execution as before, from the point where
it was aborted. Most likely though, one has aborted because one would like
to change something in the Schedule execution. For example, one could change
parameters of a specific Job. To do so, select that Job by clicking on it in the list
of Jobs in the lower part of the GUI. Then, edit the corresponding parameters on
the relevant tabs of that Job on the top part of the GUI. Then, one may want
to set jobHasStarted status to False, in order to make these options effective
for all data processed in the Schedule thus far. For example, after running a
Schedule for automated pre-processing for a while, one might want to change the
threshold for picking particles in a auto-picking job. One would then reset the

jobHasStarted status of the auto-picking job to False, while one would leave the

jobHasStarted status of other jobs like Motion correction and CTF estimation

to True. Thereby, upon a re-start of the Schedule, only new movies would
be subjected to Motion correction and CTF estimation inside the same output
directories as generated previously, but a new auto-picking directory would be
created, in which all movies acquired thus far would be processed. Examples like
these were very hard to do with the relion_it.py script in relion-3.0.

14.6 Helical reconstruction

Shaoda He, a PhD-student in the Scheres group, implemented a workflow for the
processing of helical assemblies. This involves additional tabs to the parameter-
panels of the Auto-picking , Particle extraction , 2D classification , 3D classification ,

3D auto-refine , Particle polishing and Mask create job-types. We do not have
a separate tutorial for processing helical assemblies. The general principles
remain the same as for single-particle analysis, which is covered in this tuto-
rial. Therefore, users intending to use relion for helical processing are still
encouraged to do this tutorial first. For a detailed description of the helical
options, the user is referred to the corresponding pages on the relion Wiki,
or to Shaoda’s paper[6]. We are aware that a tutorial on helical processing is
probably overdue, but due to time constraints we haven’t got to doing that yet.
Sorry...

14.6.1 Initial model generation for amyloids

The relion_helix_inimodel2d program is a new feature in relion-3.1. It
allows generation of an initial 3D reference for helical reconstruction, in par-
ticular for amyloids. It is run from the command line, and takes a selection
of suitable 2D class averages as input. It will try to align these class averages

69

http://www2.mrc-lmb.cam.ac.uk/relion/index.php/Helical_processing
https://doi.org/10.1016/j.jsb.2017.02.003

with respect to each other to form a continuously changing density that spans
an entire cross-over. At the heart of the iterative refinement process lies a “to-
mographic” 2D reconstruction with all 1D pixel columns from the cross-over.
Details of this program, together with a more elaborate documentation of its
functionality remain to be published. Possible usage is:

relion_helix_inimodel2d --i Select/job056/class_averages.star \

--crossover_distance 800 --angpix 1.15 --maxres 9 --search_shift 3 \

--mask_diameter 250 --j 6 --iter 5 --o IniModel/run1

relion_helix_inimodel2d --i IniModel/run1_it005.star \

--iniref 1@IniModel/run1_it005_reconstructed.mrcs --angpix 1.15 \

--maxres 6 --search_angle 2 --step_angle 0.5 --mask_diameter 250 \

--j 6 --iter 5 --o IniModel/run2

We like xmipp-2.4 for live-updated display of the following images during the
optimisation:

xmipp_show -img rec.spi after_reproject.spi before_reproject.spi -poll &

14.7 Sub-tomogram averaging

For sub-tomogram averaging, which was implemented with help from Tanmay
Bharat, a former postdoc in the Lowe group at MRC-LMB, the same holds as for
helical processing. Many general concepts remain the same as for single-particle
analysis, and users intending to perform sub-tomogram averaging in relion are
encouraged to go through this tutorial first. For a detailed description of the
sub-tomogram averaging procedures, the user is referred to the corresponding
pages on the relion Wiki, or to Tanmay’s paper[2]. Please note that we are
still actively working on making the sub-tomogram averaging pipeline more
convenient to use and better. This work is done in close collaboration with the
group of John Briggs, also at MRC-LMB. Meanwhile, please be advised that
the sub-tomogram averaging pipeline is considerably less stream-lined than the
single-particle one, and users should be prepared to do some scripting outside
the relion pipeline for many cases.

70

http://www2.mrc-lmb.cam.ac.uk/relion/index.php/Sub-tomogram_averaging
http://dx.doi.org/10.1016/j.str.2015.06.026

References

[1] Tristan Bepler, Andrew Morin, Micah Rapp, Julia Brasch, Lawrence
Shapiro, Alex J. Noble, and Bonnie Berger. Positive-unlabeled convolu-
tional neural networks for particle picking in cryo-electron micrographs.
Nature Methods, 2019.

[2] Tanmay A. M. Bharat, Christopher J. Russo, Jan Lwe, Lori A. Passmore,
and Sjors H. W. Scheres. Advances in Single-Particle Electron Cryomi-
croscopy Structure Determination applied to Sub-tomogram Averaging.
Structure (London, England: 1993), 23(9):1743–1753, September 2015.

[3] Shaoxia Chen, Greg McMullan, Abdul R. Faruqi, Garib N. Murshudov,
Judith M. Short, Sjors H. W. Scheres, and Richard Henderson. High-
resolution noise substitution to measure overfitting and validate resolution
in 3d structure determination by single particle electron cryomicroscopy.
Ultramicroscopy, 135:24–35, December 2013.

[4] Rafael Fernandez-Leiro and Sjors H. W. Scheres. A pipeline approach to
single-particle processing in RELION. Acta Crystallographica. Section D,
Structural Biology, 73(Pt 6):496–502, June 2017.

[5] Timothy Grant and Nikolaus Grigorieff. Measuring the optimal exposure
for single particle cryo-EM using a 2.6 reconstruction of rotavirus VP6.
eLife, 4:e06980, 2015.

[6] Shaoda He and Sjors H. W. Scheres. Helical reconstruction in RELION.
Journal of Structural Biology, in press, 2017.

[7] Dari Kimanius, Bjrn O Forsberg, Sjors HW Scheres, and Erik Lindahl. Ac-
celerated cryo-EM structure determination with parallelisation using GPUs
in RELION-2. eLife, 5, November 2016.

[8] Alp Kucukelbir, Fred J Sigworth, and Hemant D Tagare. Quantifying the
local resolution of cryo-EM density maps. Nature methods, 11(1):63–65,
January 2014.

[9] Ali Punjani, John L. Rubinstein, David J. Fleet, and Marcus A. Brubaker.
cryoSPARC: algorithms for rapid unsupervised cryo-EM structure deter-
mination. Nature Methods, 14(3):290–296, March 2017.

[10] Alexis Rohou and Nikolaus Grigorieff. CTFFIND4: Fast and accurate de-
focus estimation from electron micrographs. Journal of Structural Biology,
192(2):216–221, November 2015.

[11] Peter B Rosenthal and Richard Henderson. Optimal determination of parti-
cle orientation, absolute hand, and contrast loss in single-particle electron
cryomicroscopy. Journal of Molecular Biology, 333(4):721–745, October
2003.

71

[12] Sjors HW Scheres. Classification of Structural Heterogeneity by Maximum-
Likelihood Methods. In Cryo-EM, Part B: 3-D Reconstruction, volume 482
of Methods in Enzymology, pages 295–320. Academic Press, 2010.

[13] Sjors H W Scheres. A Bayesian view on cryo-EM structure determination.
Journal of Molecular Biology, 415(2):406–418, January 2012.

[14] Sjors H W Scheres. RELION: Implementation of a Bayesian approach
to cryo-EM structure determination. Journal of Structural Biology,
180(3):519–530, December 2012.

[15] Sjors H W Scheres and Shaoxia Chen. Prevention of overfitting in cryo-EM
structure determination. Nature methods, 9(9):853–854, September 2012.

[16] Sjors H W Scheres, R. Nunez-Ramirez, C. O. S Sorzano, J. M Carazo,
and R. Marabini. Image processing for electron microscopy single-particle
analysis using XMIPP. Nature Protocols, 3(6):977–90, 2008.

[17] J M Smith. Ximdisp–A visualization tool to aid structure determination
from electron microscope images. Journal of structural biology, 125(2-
3):223–228, May 1999.

[18] Guang Tang, Liwei Peng, Philip R Baldwin, Deepinder S Mann, Wen Jiang,
Ian Rees, and Steven J Ludtke. EMAN2: an extensible image processing
suite for electron microscopy. Journal of Structural Biology, 157(1):38–46,
January 2007.

[19] Kai Zhang. Gctf: Real-time CTF determination and correction. Journal
of Structural Biology, 193(1):1–12, January 2016.

[20] Shawn Q. Zheng, Eugene Palovcak, Jean-Paul Armache, Kliment A. Verba,
Yifan Cheng, and David A. Agard. MotionCor2: anisotropic correction
of beam-induced motion for improved cryo-electron microscopy. Nature
Methods, 14(4):331–332, April 2017.

[21] Jasenko Zivanov, Takanori Nakane, and Sjors Scheres. Estimation of high-
order aberrations and anisotropic magnification from cryo-em datasets in
relion-3.1. bioRxiv, 2019.

72

	What's new in release 3.1?
	Aberration corrections and optics groups
	The External job-type
	Schedules for on-the-fly processing
	General tweaks
	Tweaks to helical processing

	Preprocessing
	Getting organised
	Beam-induced motion correction
	CTF estimation
	Manual particle picking
	LoG-based auto-picking
	Particle extraction
	Making templates for auto-picking
	Selecting templates for auto-picking
	Auto-picking
	The shrink parameter

	Reference-free 2D class averaging
	Running the job
	Analysing the results in more detail
	Making groups

	De novo 3D model generation
	Running the job
	Analysing the results

	Unsupervised 3D classification
	Running the job
	Analysing the results in more detail

	High-resolution 3D refinement
	Running the auto-refine job
	Analysing the results

	Mask creation & Postprocessing
	Making a mask
	Postprocessing

	CTF and aberration refinement
	Higher-order aberrations
	Anisotropic magnification
	Per-particle defocus values

	Bayesian polishing
	Running in training mode
	Running in polishing mode
	Analysing the results
	When and how to run CTF refinement and Bayesian polishing

	Local-resolution estimation
	Running the job
	Analysing the results

	Checking the handedness
	Wrapping up
	Making a flowchart
	Cleaning up your directories
	Asking questions and citing us
	Further reading

	Appendix A: notes on installation
	Install MPI
	Install CUDA
	Install RELION
	Install motion-correction software
	Install CTF-estimation software
	Install RESMAP

	Appendix B: using RELION
	The GUI
	A pipeline approach
	The upper half: jobtype-browser and parameter-panel
	The lower half: job-lists and stdout/stderr windows
	The Display button
	The Job actions button
	Clean-up to save disk space

	Optimise computations for your setup
	GPU-acceleration
	Disk access

	Interaction with other programs
	The External job-type
	User interaction through the GUI
	Functionality of the executable script
	Example: a particle-picker

	On-the-fly processing: Schedules
	Variables
	Jobs
	Operators
	Edges
	Creating a new Schedule
	Executing a Schedule

	Helical reconstruction
	Initial model generation for amyloids

	Sub-tomogram averaging

